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ABSTRACT 

The study of coupled oscillators with time lag can get its applications in; Neurobiology, 

Laser arrays, Microwave devices, Communications satellites and electronic circuits, just 

to mention but few.  That is why we studied a population of n oscillators each with an 

asymptotically stable limit cycle coupled all-to-all by a linear diffusive like path with a 

time lag, τ . The system of equations was inbuilt with symmetries which we exploited 

to get an analytical understanding of the dynamics of the system. The symmetries then 

helped us get two n-dimensional invariant manifolds: the diagonal manifold and the 

other orthogonal manifold. We exploited the symmetries in the coupling terms to 

establish the range of time delay τ for stability of synchronized state. 

We did a rigorous study of the condition of stability and persistence of the synchronized 

manifold of diffusively coupled oscillators of linear and planar simple Bravais Lattices  

by considering n  ( 2)n ≥ , d-dimensional oscillators each with an asymptotically stable 

limit cycle coupled all-to-all by a nearest neighbor linear diffusive like path. We used 

the invariant Manifold Theory and Lyapunov exponents to establish the range of 

coupling strength for stability and robustness of the synchronized manifold. The 4
th

 and 

5
th

 order Runge-Kutta method, together with ode-45 and dde-23 Mat lab solvers were 

the numerical methods we used to get the numerical solution of our problem. We 

established the estimate for bound of τ  for which the synchronized manifold remains 

stable when the oscillators are coupled in an all-to-all configuration. The synchronized 

state is seen to be stable when τ  < 9. Even for significant time delays, a stable 

synchronized state exists at a very low coupling strength. 
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From the study we realized that if synchronization exists for a certain coupling 

configuration, then there exist a k0 > 0 such that for all  k0 > k , synchronization 

manifold is stable and persist under perturbation.  
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CHAPTER ONE 

1.0 INTRODUCTION 

 Many non-linear dynamical systems in various scientific disciplines are influenced by 

the finite propagation time of signals in feedback loops. A typical physical system is 

provided by a laser system where the output light is reflected and fed back to the cavity. 

Time delays also occur in other situations; for example, in traffic flow including a 

driver’s reaction time, in Biology due to physiological control mechanism, in economy 

where the finite velocity of information processing has to be taken into account. 

Moreover, realistic models in population dynamics or in Ecology include the duration 

for the replacement of resources. In some situations, systems with large-delay appear 

such as in lasers and electromechanical systems. 

 An oscillator is a system of model equations, normally Ordinary Differential Equations, 

with a non-constant solution that displays some repetitive phenomenon and its 

derivative with respect to time is non-constant. Observations of the phenomena of 

coupled oscillators date back to the early seventeenth century, when Christian Huygens 

noticed that the pendulums of two of his clocks, suspended side-by-side, always settled 

into swinging in opposite directions, even after he disturbed the position of the 

pendulums (Bennett et al., 2002; Strogatz, 2003). Another form of phased coupled 

oscillation, in the synchronous flashing of hundreds of fireflies on trees along the Chao 

Phraya River in Thailand was reported (Buck and Buck, 1976). Many similar instances 

of naturally occurring synchronization have since been discovered, such as in heart 

pacemaker cells and in neural networks (Camazine et al., 2001). 



 

 

2 

 

Fireflies generate light from the lantern in the abdomen; it usually takes about 800 

milliseconds to recharge the lantern and 200 milliseconds to produce a spark; the 

process may then repeat. Formal models of this behavior describe a single firefly as an 

oscillator with a phase 0 ≤ θ≤ 2π and period ώ. For a large proportion of each cycle, the 

oscillator is recharging and therefore discharging is impossible. For the remaining 

portion of the cycle, the firefly/oscillator is ready to discharge or “fire”. If the 

firefly/oscillator is operating in isolation from other firefly/oscillators, then it fires at θ = 

2π. If a firefly/oscillator is not operating in isolation, has completed recharging, and 

sees sufficient light (stimulus) from neighboring fireflies, the firefly/oscillator can 

adjust its phase slightly so as to bring itself closer to synchronization with the other 

firefly/oscillators (Camazine et al., 2001).  

Networks of oscillators have properties that make them an interesting approach to 

coordinating activity in large networks of simple computational elements. First, the 

synchronization mechanism of the oscillators is parallel and distributed – no global 

coordination is required. Second, the oscillators can be implemented in hardware with 

very simple circuitry, making it a promising approach for massive networks of tiny 

processing elements. In fact, the approach has already received some attention for 

synchronization in ad-hoc sensor networks (Hong et al.,2003; Lucarelli et al., 2004; 

Werner-Allen et al., 2005) and the coordination of multi-agent systems (Spong, 2006). 

It is important to understand the dynamics of a population of coupled oscillators, 

particularly how the collective behavior depends on the intrinsic properties of the 

individual oscillators and the mode of coupling between them. Sometimes individual 
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oscillators display certain dynamical behavior, for instance when they synchronize and 

settle to a stationary point (Oscillator death) (Bar-Eli, 1990) or when chaotic dynamical 

behavior is possible (Mirollo et al., 1990).  

This problem is not easy to handle as Mathematical theory providing a detailed 

description of the behavior of the solutions does not exist for some model equations. 

Thus certain realistic simplifications are done on the type of oscillator, the nature of 

coupling or on both.  Emphasis is usually on a special class of coupling functions and 

the exact nature of individual oscillators. The oscillators considered are those that have 

asymptotically stable periodic solutions, that is, solutions which tend to a particular 

periodic solution time t  increases without bound. The coupling function can either be 

linear or non-linear and with or without delay. 

An oscillator can be described by ordinary differential equations or partial differential 

equations. Herein, we shall consider oscillators described by ordinary differential 

equations. To obtain an asymptotically stable periodic solution for each oscillator, an 

appropriate system of ordinary differential equations, which must be non-linear and 

have at least two stable variables, has to be chosen. We will consider an oscillator 

described by differential equations of the form; 

                    ( ) ( ( ), )z t f z t µ=�                                                                                       (1.1)                     

where nz R∈  is an n -dimensional ( 2)n ≥  real state variable, pRµ ∈  is a p -

dimensional ( 1p ≥ ) real parameter, n  and p  are positive natural numbers), f  is a 

non-linear smooth function from n pR R×  to nR  and the dot on z  denotes 

differentiation with respect to time. 
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 In many physical processes, oscillators are directly coupled. That is, an action which 

could be a variable in case of differential equations is transmitted from one oscillator to 

the other without going through an intermediate step.  Frequently, systems of oscillators 

can be arranged in topological structures with nearest neighbor coupling, that is, the 

oscillators are linked to their immediate neighbours. In this case, a neighbor is a 

physical location of an oscillator relative to others in a topological structure and 

coupling is without going through an intermediate oscillator. There are different forms 

of nearest neighbor coupling topologies as in the figures below; 

 

Figure. 1.1 Example of coupling topologies:  
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(a) Square grid with periodic boundary conditions  

(b) Completely connected graph  

(c) Directed graph where each oscillator receives signals from two others  

(d) Ring with nearest neighbor and next to nearest neighbor coupling  

(e) Randomly connected graph, and  

(f)  A tree in which the root node receives a signal from one of its siblings.  

Arrows indicate direction of coupling along an edge; edges without arrows are coupled 

bi-directionally. 

 In this study, oscillators of the form given in equation (1.1), coupled all-to-all 

(oscillators are linked to other oscillators in all directions), were considered. This choice 

was taken because the resulting system of equations may be generalized to other types 

of topologies. The concept of time lag in all the variables involved in the coupling was 

considered.  The n all-to-all coupled oscillators, with ( 2)n ≥ , can be described by the 

differential equation; 

( ) ( ( ), ) ( ( ), ( ))
j j i j

z t f z t g z t z tµ= +�                                                                          (1.2) 

where , n

i jz z R∈ are real state variables, pRµ ∈  is a parameter, f  is a non-linear 

smooth function from some open subset of n pR R×  to nR , and g  is a non-linear or 

linear smooth function from  n nR R×  to nR . Each system in (1.2) without g has an 

asymptotically stable periodic orbit that attracts the whole of 2R  except at the origin. 

The system of Ordinary Differential Equations describing models of the example above 

require that cause and effect is simultaneous. That is, since only a single value of time 
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occurs in the equation, the state of the system at time  t , say, can only be influenced by 

its state at the same time t . Such systems are referred to as instantaneous models. 

However, in many physical situations the duration of transmission of an action cannot 

be ignored. In chemical reactors, which are diffusively coupled through mass transfer, a 

delay in mass transfer from one reactor to the other cannot be ignored. When the delay 

is considered, the coupling terms will depend not only on the present state of the 

system,   but also on the previous one. In neural oscillators coupled at a synapse, it is 

possible that the coupling signal, which is either a chemical transfer or an electrical 

pulse or both between oscillators, may take some time before its effect is realized 

(Ermenrout et al, 1990). 

Thus a more general formulation might allow events at one time to affect the state of the 

system at some other time, either at prior time( t τ− ) or in future time( t τ+ ).   ( 0Rτ +∈  

is the delay and 0 [0, )R
+ = ∞ ). Such generalization is provided for by use of Functional 

Differential Equations in place of familiar ordinary differential equations. 

If we were to take into account the 0τ >  in the transmission of variables between 

oscillators, equation (1.2) will take the form; 

              ( ) ( ( ), ) ( ( ), ( ))
j j i j

z t f z t g z t z tµ τ= + −� , , 1, 2,....,i j n=                                   (1.3) 

This is an example of a functional differential equation called a delay differential 

equation (DDE). 
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1.1 BASIC  THEORY OF DELAY DIFFERNTIAL EQUATIONS 

After the First World War, the development and use of automatic control systems 

resulted in studies of an entirely different class of differential equations the so-called 

delay differential equations or difference differential equations (DDE). Any system 

involving a feedback control will almost certainly involve delays. A time delay arises 

because a finite time is required to sense information and the react to it. Stability 

problems, however, appear as soon as several mechanisms need to be controlled 

simultaneously.  

Delay Differential Equations often arise in either natural or technological control 

problems. A controller monitors the state of the system, and makes adjustments to the 

system based on its observations. Since the adjustments can never be made 

instantaneously, a delay arises between the observation and the control action. For 

example a two- wheeled suitcase may begin to rock from side to side as it is pulled. 

When this happens, the person pulling it attempts to return it to the vertical position by 

applying a restoring moment to the handle. There is a delay in this response that can 

affect significantly the stability of the motion (Suherman et al., 1997). 

There are different kinds of delay differential equations. We will focus on just one kind, 

that is; 

        1 2( ) ( ( ), ( ), ( ),....., ( ))
n

z t f z t z t z t z tτ τ τ= − − −�                                                       (1.4) 

where the quantities ( 1, 2,...., )
i

i nτ =  are positive constants. In other words, we will 

focus on equations with fixed, discrete delays. There are other possibilities, notably 
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equations with state dependent delays ( the '

i
sτ  depend on  z  ) or with distributed 

delays (the right hand side of the differential equation is a weighted integral over past 

states). 

When we give initial conditions for finite dimensional dynamical systems, we only need 

to specify a small set of numbers, namely the initial values of the state variables, and 

perhaps the initial time in non-autonomous systems. In order to solve delay equations 

we need more: at every time step, take into consideration the earlier value of z . We 

therefore need to specify an initial function which gives the behavior of the system prior 

to starting time (assuming that the starting time  t = 0).  

 

1.1.1 Properties of DDEs 

A time independent solution of a DDE is not uniquely determined by its initial state at a 

given moment but, instead, the solution profile on an interval with length equal to the 

delay or time lag τ  has to be given. That is, we need to define an infinite -dimensional 

set of initial conditions between  t τ=  and  0t = . Thus, DDEs are infinite-dimensional 

problems, even if we have only a single linear DDE. 

Consider the initial value problem; 

, (0) 1
dz

kz z
dt

= =                                                                                                            (1.5) 

which can take the exponential solution; 

( ) exp( )z t kt=                                                                                                               (1.6) 
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Physically the knowledge of the present (here:  (0) 1z = ) allows us to predict the future 

at any time  t. The past time is not involved in this solution. For a DDE, the past exerts 

its influence on the present and, hence, on the future. The following DDE; 

( ), ( ) 1
dz

kz t z t
dt

τ= − =  when 0tτ− ≤ ≤                                                                        (1.7) 

exhibits a right hand side that depends on z at time ( )t τ−  where τ  is the delay or time 

lag. There are two important properties of this equation that need to be stressed; 

 

1.1.2 Oscillatory Behavior 

In contrast to the exponential solution (1.6), the solution of Eq. (1.7) can be oscillatory. 

This can be seen by seeking a particular solution of the form; 

sin( )z A tω=                                                                                                                 (1.8) 

Inserting (1.8) into Eq. (1.7), we find 

cos( ) sin( ( )) [sin( )cos( ) cos( )sin( )]A t kA t kA t tω ω ω τ ω ωτ ω ωτ= − = −
                       (1.9) 

Equating to zero the coefficients of cos( )tω  and sin( )ωτ , we get the following; 

cos( ) 0ωτ =  and sin( )kω ωτ= −                                                                               (1.10) 

The first condition is satisfied if 
2

π
ωτ =  or 

3

2

π
 and with the second condition, we 

obtain the following possibilities; 

(i) 
2

π
ωτ =   and  1,k = −                                                                         (1.11) 
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(ii) 
3

2

π
ωτ =  and  1k = − .                                                                       (1.12) 

For these particular values of k  and τ  the DDE  (1.7) assumes the harmonic solution 

(1.8).  

 

1.1.3 Short time solution 

The second and most obvious difference between ODEs and DDEs is the initial data. 

The solution of an ODE is determined by its value at the initial point t = a. In evaluating 

the DDEs for a ≤ t ≤ b, a term like y (t−τj) may represent values of the solution at points 

prior to the initial point. For example, at t = a, we must have the solution at (a − τj). If T 

is the longest delay, the equations generally require the solution S (t) for a − T ≤ t ≤ a. 

For DDEs we must provide not just the value of the solution at the initial point, but also 

the “history”, the solution at times prior to the initial point, that is, the solution ( )
o

z t  at 

times prior to the initial point. A long-time oscillatory solution is possible and that its 

initial history may have an effect on the short-time solution. 

 

1.2 DIFFERENCES BETWEEN IVP FOR  DDEs and ODEs. 

In a system of ordinary differential equations  

                    ( ) ( , ( ))z t f t z t=� ,                                                                                     (1.13) 

the derivative of the solution depend on the solution at the present time t. In a system of 

delay differential equation the derivative also depends on the solution at earlier times. 

Delay differential equations can take a general form;  
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                   1 2( ) ( , ( ), ( ), ( ),................... ( ))
k

z t f t z t z t z t z tτ τ τ= − − −�                           (1.14) 

where the delay (lags) 
j

τ  are positive constants  

                   1 2 3 40 ................
k

τ τ τ τ τ< < < < < <  

Delay differential equations arise in models throughout the sciences, but our solution 

will make it clear that they have been especially popular for biological models. Delay 

differential equations with constant delays are a large and important class. By restricting 

attention to problems with constant delays, it is possible to develop software that is 

more efficient and at the same time more provably reliable, than software available for 

more general problems. Methods used to solve ODEs can generally to be extended to 

solve DDEs. In particular, the MATLAB DDE solver dde23 is based on the methods 

used in the MATLAB IVP solver ode 23. The user interface of dde23 is much like that 

of ode 23, yet owing the differences between DDEs and ODEs, it also resembles the 

MATLAB BVP solver bvp4c (type 4c of MATLAB BVP solver).  

The numerical solution will be denoted by ( )S t , so for t a≤  was used to denote the 

given history.  Since numerical methods for IVPs for both ODEs and DDEs are 

intended for problem with solutions that have several continuous derivations, 

discontinuities in low- order derivatives requires special attention. Such discontinuities 

are rare for ODEs, but they are almost always present for DDEs because the first 

derivative of the history function is almost always different from the first derivative of 

the solution at the initial point. That is, almost always; 

                       1 2( ) ( ) ( ) ( , ( ), ( ),........, ( ))
k

z t s a z a f a s a s a s aτ τ τ= − ≠ + = − − −�� �         
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There are other ways in which discontinuities in low – order derivatives commonly 

arise. Some problems have histories with discontinuities in low order derivatives. For 

instance in the solution of an immunology model due to Merchuk, one component of its 

history for 0t ≤  is 6max(0, 10 )t −+ , so there is discontinuity in the first derivative of 

this component at 610t
−= . As with ODEs, a change in the model amounts to a restart 

and so introduces a discontinuity in the first derivative even when the solution is 

continuous through the change. This can happen at times known in advance or all times 

that must be determined by event location. Because they propagate, discontinuities are 

much more serious matter for DDEs than they are for ODEs. For a smooth function f, 

the equation (1.14) show that the smoothness of the derivative z�  at the current time t 

depends on the solution z at the past time 
j

t τ−  

Differentiating the equations show that the same is true for higher derivatives.  

Consider the equation; 

                 ( ) ( 1)z t z t= −�                                                                                             (1.15) 

Obviously we will have; ( 1) ( )( ) ( 1)k kz t z t+ = −  for this equation. In general, if there is a 

discontinuity at time t
∗ of order k, meaning that ( )kz  has a jump at t t

∗=  then as the 

variable t moves through  jt τ∗ + there is a discontinuity in ( 1)kz +  because of the term 

( )
j

z t τ−  in equation (1.14) with multiple delays, a discontinuity at the time t
∗  is 

propagated to the times;   

                 1 2 3, , ,...............
k

t t t tτ τ τ τ∗ ∗ ∗ ∗+ + + + ,  
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and each of these discontinuities is in turn propagated. If there is a discontinuity at t
∗  of 

order, k, then the discontinuity at each of the times jt τ∗ +  is of at least order ( 1)k + , and 

so on. Because the effect of a delay appears in a derivative of higher order, the solution 

becomes smoother as the integration proceeds. This “smoothing” proves to be quite 

important to the numerical solution of DDEs. A method of steps is a technique for 

solving DDEs by reducing them to a sequence of ODEs. Using this technique, as an 

illustration, we can solve equation (1.15) with history ( ) 1s t =  for 0t ≤  on the interval 

0 1t≤ ≤  the function ( 1)z t −  in (1.15) has known value ( 1) 1s t − =  because 1 0t − ≤ . 

The DDE on this interval reduces to the ODE ( ) 1z t =�  with initial value (0) (0) 1z s= = . 

We solve this IVP to obtain ( ) ( 1)z t t= +  for 0 1t≤ ≤  .The solution of the DDE exhibits 

a typical discontinuity in its first derivative at 0t =  because it is 0 to the left of the 

origin and 1 to the right. Now that we know the solution for 1t ≤ , we can reduce the 

DDE on the interval 1 2t≤ ≤ to an ODE ( ) ( 1) 1z t t t= − + =�  with initial value (1) 2z =  

and solve this initial value problem to find that 2( ) 0.5 1.5z t t= +  on this interval. The 

first derivative is continuous at 1t = , but there is a discontinuity in the second 

derivative. The DDE’s solution on the interval [ , 1]k k +  is a polynomial of degree 1k +  

and that the solution has a discontinuity at time t k=  of order 1k + .  

For the general equation (1.14), with the history function ( )S t  defined for t a≤ , the 

DDEs reduces to ODEs on the interval [ , ]a a τ+  because, for each j, the argument 

j
t t aτ τ− ≤ − ≤  and the  ( )

j
z t τ−  have the known values ( )

j
s t τ− . Thus we have an 
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IVP for a system of ODEs with initial value ( ) ( )z a s a=  .This problem is solved on 

[ , ]a a τ+  and extend the definition of ( )s t  to this interval by taking it to be the solution 

of this IVP. Now that the solution for t a τ≤ +  is known, we can move on to the 

interval [ , 2 ]a aτ τ+ +  and so forth. In this way we can solve the DDES on the whole 

interval of interest by solving a sequences of IVPs for ODEs. Although our concern is 

in problem with constant delays, the method of steps is clearly applicable to DDEs with 

delays that depend on both t  and ( )z t . The main requirement is simply that the delays 

all be bounded below by a constant 0τ > .   

 

1.3 NUMERICAL METHODS FOR DELAY DIFFERENTIAL EQUATIONS 

The method of steps shows that we can solve DDEs with constant delays by solving a 

sequence of IVPs for ODEs. Because a lot is known about how to solve IVPs, this has 

been a popular approach to solving DDEs, both analytically and computationally. 

Solutions smooth out as the integration progresses, so if the shortest delay τ  is small 

compared to the length of the interval of integration then there can be a good many 

IVPs, each of which may often be solved in just a few steps. In these circumstances, 

explicit Runge-Kutta methods are both effective and convenient. Because of this, most 

solvers are based on explicit Runge-Kutta methods; in particular, the MATLAB DDE 

solver dde23 is based on the BS (2,3) pair used by the ODE solver ode23. In what follow s 

consider how to make the approach practical and use dde23 to illustrate points.  
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In solving equation (1.15) for the interval 0 1t≤ ≤  the DDE reduces to an ODE with 

( 1)z t −  equal to the given history ( 1)s t −  and   (0) 1z = . Solving this IVP with an 

explicit Runge-Kutta method is perfectly straightforward. A serious complication is 

revealed when we move to the next interval. The ODE on this interval depends on the 

solution in the previous interval. However, if we use a Runge-Kutta method in its 

classical form to compute this solution, we approximate the solution only on a mesh in 

the interval[0,1] . The first widely available DDE solver, DMRODE, (Naves.1975), used 

cubic Hermite interpolation to obtain the approximate solutions needed at other points 

in the interval. This approach is not entirely satisfactory because step sizes chosen for 

an accurate integration may be too large for accurate interpolation. What we need here 

is a continuous extension of the Runge—Kutta method.  

The BS (2, 3) Runge—Kutta method used by the code ode23 was derived along with an 

accurate continuous extension that happens to be based on cubic Hermite interpolation. 

On reaching the current time t, we must be able to evaluate the approximate solution 

( )S t  as far back as the point t τ ∗− (where  τ ∗ is a large delay). This means that we must 

save the information necessary to evaluate the piecewise-polynomial function ( )S t . The 

continuous extension of the BS (2, 3) pair is equivalent to cubic Hermite interpolation 

between mesh points, so it suffices to retain the mesh as well as the value and slope of 

the approximate solution at each mesh point. The code dde23 returns the solution as a 

structure that can have any name, but let us call it sol. The mesh is returned in the field 

sol.t.  The solution and its slope at the mesh points are returned as sol.z and sol.p  
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respectively. This form of output is an option for ode23, but it is the only form of output 

from dde23. Just as with the IVP solvers, the continuous extension is evaluated using the 

solution structure and the auxiliary function deval. It is often useful to be able to evaluate 

a solution anywhere in the interval of integration, but unlike the situation with the IVP 

solvers, here we need the capability in order to solve the problem. Representing the 

solution as a structure simplifies the user interface. We shall see that, in addition to the 

information needed for interpolation, we must have other information when solving 

DDEs — just what depends on the particular problem.  

Holding this information as fields in a solution structure is both convenient and 

unobtrusive. All the early DDE solvers were written in versions of FORTRAN without 

dynamic storage allocation. This complicates the user interface greatly and there is a 

real possibility of allocating insufficient storage. The dynamic storage allocation of 

MATLAB and the use of structures allow a much simpler and more powerful user 

interface for dde23. 

The DDE (1.15) leads to ODEs that are easy to integrate, so a code will try to use large 

step sizes for the sake of efficiency. Indeed, Runge—Kutta formulae are exact on the 

first interval, but a solver cannot be permitted to step past the point 1t =  because the 

solution is not smooth there. If the discontinuity is ignored, the order of a Runge—Kutta 

method can be lowered. The numerical solution is then not as accurate as expected, but 

what is worse is that the error estimator is not valid. This is because the error is 

estimated by comparing the results of two formulae and neither has its usual order when 

the function  f is not sufficiently smooth. We can deal with this difficulty by adjusting 



 

 

17 

 

the step size so that all points where the solution ( )z t has a potential low-order 

discontinuity are mesh points. This implies that none of the functions 

1 2( ), ( ), ( ),........., ( )
k

z t z t z t z tτ τ τ− − −  can have a low-order discontinuity in the span of 

a step from 
n

t to 
n

t h+ . Because we step to discontinuities of the solution ( )z t , this is 

clear for ( )z t  itself.   

There cannot be a point ξ  in ( , )
n n

t t h+  where some function ( )
j

z ξ τ−  is not smooth, 

because the discontinuity in ( )z t  at the point 
j

ξ τ−  would have propagated to the point 

ξ  and we would have limited the step size h so that we did not step past this point. 

Runge-Kutta formulae are one-step Formulae and so, if we proceed in this way, they are 

applied to functions that are smooth in the span of a step and the formulae have the 

orders expected. As pointed out earlier, low-order discontinuities are a serious difficulty 

when solving DDEs because there is almost always one at the initial point and they 

propagate throughout the interval of integration. On the other hand, the order of a 

discontinuity increases each time it propagates forward, so we need to track 

discontinuities only as long as they affect the formula implemented. Before dde23 begins 

integrating, it locates all discontinuities of order low enough to affect the integration. It 

assumes that there will be a discontinuity in the first derivative at the initial point. Some 

problems have discontinuities at additional points known in advance. To inform dde23 of 

such derivative discontinuities, the points are provided as the value of the option Jumps. 

Options are set with the auxiliary function ddeset just as they are set with odeset for the 
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IVP solvers. For instance, the three discontinuities of the Hoppensteadt—Waltman 

model can be provided as; 

          C = 1/sqt(2); 

          Options = ddeset (‘Jumps’,[(1-c),(2-c)]); 

No distinction is made between discontinuities in the history and in the rest of the 

integration, so the discontinuity of the Marchuk model is handled in the same way. 

Sometimes the initial value ( )z a  has a value that is different from the value ( )s a  of the 

history. This is handled by supplying ( )z a  as the value of the option Initially. When there 

is a discontinuity in the solution itself at the initial point, we must track it to one level 

higher than usual.  

Each of the initial discontinuities propagates to the points; 

                   1 2 3, , ,........,
k

ξ τ ξ τ ξ τ ξ τ+ + + +  

where the order of the discontinuity is increased by 1. Each of the resulting 

discontinuities is, in turn, propagated in the same way. The locations of discontinuities 

form a tree that we can truncate when the order of the discontinuities is sufficiently high 

that they do not affect the performance of the formulae implemented. There is a 

practical difficulty in propagating discontinuities that is revealed by supposing that the 

DDE has the two lags 
1

3
and 1 and that the integration starts at 0t = . The first lag 

causes discontinuities to appear at the points 
1 1 1

0, , 2 ,3 ,...........
3 3 3

× ×  and the second 

causes discontinuities to appear at the points 0, 1, 2, 3….The difficulty is that the finite 
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precision representation of 
1

3
3

×  is not quite equal to 1. It appears to the solver that 

there are two discontinuities that are extremely close together. This is catastrophic 

because the step size is limited by the distance between discontinuities. The solver dde23 

deals with this by regarding points that differ by no more than ten units of round off as 

being the same and purging one of them.  This purging is done at each level of 

propagation in order to remove duplicates as early as possible.  

The solution of a system of DDEs (1.14) becomes smoother as the integration 

progresses, which might lead us to expect a corresponding increase in step size. 

Certainly we must limit the step size so as not to step over a low-order discontinuity. 

The step size appears to be limited to the shortest delay, for if we were to step from 
n

t  

to 
n

t h+  with step size h τ>  then at least one of the arguments 
j

t τ−  would fall in the 

interval ( , )
n n

t t h+ . This means that we would need values of the solution at points in 

the span of the step, but we are trying to compute the solution there and don’t yet know 

these values! Some solvers accept this restriction on the step size. Others, including 

dde23 use whatever step size appears appropriate to the smoothness of the solution and 

iterate to evaluate the implicit formulae that arise in this way. On reaching 
n

t  we have a 

piecewise-cubic polynomial approximation ( )s t  to the solution for 
n

t t≤  When the BS 

(2, 3) formulae need values ( )
j

z t τ−  for arguments 
j n

t tτ− > , these values are 

predicted by extrapolating the polynomial approximation of the preceding interval. 

After evaluating the formulae we have a new cubic polynomial approximation for the 
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solution on the interval ( , )
n n

t t h+  and we use it when correcting the solution by 

reevaluating the formulas. Evaluating the BS (2, 3) formula when the step size is larger 

than the shortest delay, is just like evaluating an implicit multistep method.  

Earlier we mentioned the need for event location. This capability is available in dde23 

exactly as in ode23 except that information about events is always returned as fields of 

the solution structure. When a terminal event is located, it is not unusual to continue the 

integration after modifying the equations and possibly modifying the final value of the 

solution for use as the initial value of the new integration. This is easy enough when 

solving ODEs with the IVP solvers of MATLAB because the solutions of the various 

IVPs can be aggregated easily to obtain a solution over the whole range of interest. The 

situation is quite different when solving DDEs. The most important difference is that a 

history must be supplied for the subsequent integration. This history is mainly the 

solution as computed up to the event, which is to be evaluated by interpolation, but it 

may also include the given history, which may be supplied in three different forms in 

dde23 and so be evaluated in different ways. The solver dde23  accepts a solution structure 

as history and uses information stored in this structure to evaluate properly the terms in 

the DDE that involve delays. Another issue is the propagation of discontinuities. It may 

be that the event occurs whilst some of the propagated discontinuities are still active. 

For the current integration we must reconstruct the tree of discontinuities and propagate 

them into the current interval of integration. This requires some information to be 

retained from the previous integration. There is, of course, a new discontinuity 

introduced at the new initial point. It is not unusual for the initial value of the solution to 
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be different from the last solution value of the previous integration. This is handled with 

the Initialz option.  

Definition 1.3.0  

Let 0τ >  be a given real number, ( , )R = −∞ ∞  nR  an n-dimensional linear vector space 

over the real field, and ([ ,0], )nC Rτ= −� , where �  indicates continuous, is a Banach 

space of continuous functions mapping the interval  [ ,0]τ−  into nR . If  Ω  is an open 

subset of R C× , ( , )nf R∈ Ω�  then the relation 

                        ( ) ( , )
t

z t f t z=�                                                                                      (1.16) 

where the derivative at t  denotes the right hand derivative, defines a Functional 

Differential Equation. This includes a special case namely; 

                        ( ) ( , ( ), ( ), )z t f t z t z t τ µ= −�                                                                  (1.17)  

where 0Rµ +∈  is some parameter. Equation (1.17) is an example of a parameterized 

autonomous delay differential equation. 

 The initial function would be a function ( )z t  defined on the interval [ ,0]τ− . To 

understand the dynamics induced by this delay equation, one would think in the same 

terms as for ODEs, that is, the solution consists of a sequence of values of z at 

increasing values of t . However, from a purely theoretical perspective, this is not the 

best way to think of equations of this type. A much better way is to think of the solution 

of this DDE as a mapping from functions on the interval  [ , ]t tτ−  into the functions on 

the interval [ , ]t t τ+ . In other words, the solution of this dynamical system can be 
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thought of as a sequence of functions  0 1 2( ), ( ), ( ),.......f t f t f t  defined over a set of 

continuous time intervals of length τ . 

Definition 1.3.1 

Let f in equation (1.17) above be such that (0, )nf R∈� , 0  is an open subset of C R×  

(a)  A continuous function  :[ , ] nz R Rτ− ∞ × →  is called a solution of equation (1.17) if   

the following hold;  

             (i) ( , )z t µ  is continuous on [ , ) Rτ− ∞ ×  and has a right hand derivative at t τ= −  

             (ii)  ( , )z t µ  is continuously differentiable for 0t ≥  and satisfies (1.17). 

(b)  Let Cϕ ∈  be given, then a continuous function ( ) ( , , )z t z t µ ϕ=  is called a solution 

of   the initial value problem; 

                           ( ) ( ( ), ( ), ),z t f z t z t τ µ= −�   
[ ,0]

( ) ( )z t t
τ

ϕ
−

=                                      (1.18)   

if ( )z t  satisfies equation (1.18) with  

                            
[ ,0]

( ) ( )z t t
τ

ϕ
−

= .                                                                             (1.19)  

So as to find the solution of (1.17), it  is equivalent to solving the integral equation; 

                             

0

0

(0)

( ) (0) ( ( ), ( ), ) , 0

t

z

z t f z s z s ds t

ϕ

ϕ τ µ

= 



= + − ≥ 


∫
                                  (1.20) 

Existence and uniqueness of the solution of equation (1.17) subject to condition (1.19) 

can easily be shown by the step-by-step method (Halaney,  1966). 

Assume 1( )
k

tϕ −  is defined for [( 2) , ( 1) ]t k kτ τ∈ − − , 1,2,.......k =  and form a system 

( ) ( ( ), ( ), )
k

z t f z t tϕ τ µ= −  for ( 1)k t kτ τ− ≤ ≤ , 1,2,.......k =  
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 By virtue of continuity hypothesis, a solution of this system with initial condition; 

                    1 1( ) ( )
k k

z t tϕ− −=    1,2,.......k =  , exists and is denoted by ( ) ( )
k k

z t tϕ= , 

where we have dropped the implicit indication of dependence of µ and  ϕ  for purposes 

of notation brevity.  

A solution of (1.17) defined by the initial function 0 ( )tϕ will be given by the relation 

 

                   

0

1

( 1)

( ), [ ,0]

( )
( ) ( ( ), ( ), ) , [( 1) , ]

k

k

k

t t

z t
z t f z s z s ds t k k

τ

τ

ϕ τ

τ µ τ τ−

−

∈ −


= 
+ − ∈ −


∫

       1,2,.......k =  

Clearly the function ( )z t  constructed is continuous and differentiable in the interior 

points of the interval[( 1) , ]k kτ τ− , 1k ≥ ,   At 0t =  , ( )z t has only the right hand 

derivative, and in general if kf ∈� ( k
�  indicates k-times differentiable), 1,2,.......,k =  

( ) [ , ]jz t jτ∈ ∞�    1, 2,...., 1j k= + . 
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1.4 OTHER DEFINITIONS AND TERMINOLOGIES 

1.4.1 Invariant set 

A set 1M  is said to be invariant under the flow defined by the equation; 

( ) ( ) ( ( ))
k

z t A z t f z t= +�   

where 1 1 2 2( ( )) ( ), ( ),....., ( )
n n

f z t f z f z f z=  and 
k

A  is a real symmetric matrix depending 

upon a parameter 1 2 3( , , ,...., ) d

d
k k k k k R= ∈  and the state vector ( ) nNz t R∈  with 0

j
k ≥ ) 

if picking any initial point  0 1z ∈M , the solution 0 1( , )z t z ∈M  for all 0t ≥ . 

1.4.2 Manifold 

A manifold is a set which locally has a structure of the Euclidean space. They are m-

dimensional surfaces embedded in n
�  , m n< . If the function g(z) in the equation 

( )
i

z g z=� , (where 
i

z  is a state variable and g is some function), for instance, is 

describing a surface with maximal rank; that is the Jacobian of ( ) 0g z ≠ , then by the 

implicit function theory, we can locally represent this surface as a graph. The surface is 

r
c  manifold if the graph representing it is r

c  

1.4.3 Flow 

Let E be the open set of n
� and let 1( )g c E∈ . For 0z E∈ , let 0( ; )z t z  be the solution of 

the equation ( )
i

z g z=�  with initial condition 0(0)z z=  defined on its maximal interval 

of existence 0( )I z . Then for 0( )t I z∈ , the set mappings  ( )z t  defined by 

0 0( ) ( ; ) ( )
t

z t z t z z= = Φ  is called the flow of the differential equation ( )
i

z g z=� . The 
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evolution operator have the following properties that reflect the deterministic character 

behavior of the dynamical system ( )
i

z g z=� ; 

(i) 0 d
IΦ =  where 

d
I is an identity map on E, with 

d
I z z=  for all z E∈ ; 

that is, the system does not change its state spontaneously. 

(ii) ( ) ( ) ( )
t s t s

z z z+Φ = Φ + Φ  for all 0, ( )t s I z∈ , z E∈ ; that is, the law 

governing the behavior of the system does not change with time. 

(iii) 0 0( ) ( )
t t d

z z I−Φ Φ =  for invertible maps. 

(iv) ( )z t  is also referred as the solution or flow of the vector field ( )g z  . 

1.4.4 Inflowing Invariant Manifold 

A manifold M  with boundary is inflowing invariant, under the flow of the vector field  

( )g z  , if the vector field points strictly inwards on the boundary. 

1.4.5 Overflowing Invariant Manifold 

A manifold M  with boundary is overflowing invariant, under the flow of the vector 

field  ( )g z  , if the vector field points strictly outwards on the boundary. 
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1.5 THE ROLE OF SYNCHRONIZATION 

Synchronization occurs when oscillatory (or repetitive) systems via some kind of 

interaction adjust their behaviors relative to one another so as to attain a state where 

they work in unison. An essential aspect of many of the games played by children 

teaches them to coordinate their emotions. They skip and learn to jump in synchrony 

with the swinging rope. 

One of the main problems in a swimming class is learning to breathe in synchrony with 

the strokes. Not necessarily one-to-one, as there are circumstances where it is 

advantageous to take two or more strokes per an inhalation. However, the phase 

relations must be correct if not to drown. In much the same way, a horse has different 

forms of motion (such as walk, trot, and gallop) and each of these gaits corresponds to a 

particular rhythm in the movement of the legs (Collins, J.J and Stewart, I., 1993; 

Strogatz, S.H. et al., 1993). At the trotting course, the jockey tries to keep the horse in 

trot to the highest possible speed. In its free motion, however, a horse is likely to choose 

the mode that is most comfortable to it (and, perhaps, least energy demanding). As the 

speed increases, the horse will make transitions from walk to trot and from trot to 

gallop. 

Synchronization is a universal phenomenon in non-linear systems (Pikovsky, et 

al.,2001). Well-known examples are the synchronization of two (pendulum) clocks 
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hanging on a wall, and the synchronization of the moon’s rotation with the orbital 

motion so that the moon always turns the same side towards the earth. A radio receiver 

functions by synchronizing its internal oscillator with the period of the radio wave so 

that the difference, that is, the transmitted signal, can be detected and converted into 

sound. A microwave emitting diode is placed in cavity of a specific form and size so as 

to synchronize with a particular resonance frequency of the cavity. 

Synchronization can also be observed between coupled laser systems and coupled 

biochemical reactors. At the assembly line one has to ensure an effective 

synchronization of the various processes for the production to proceed in an efficient 

manner, and engineers and scientists over and over again exploit the technique of 

modulating (or chopping) a test signal in order to benefit from the increased sensitivity 

of phase detection. 

The history of synchronization dates back at least to Huygens’ observations (Huygens, 

C. et al 1986). For regular (for example, limit cycle) oscillators, synchronization implies 

that the periodicities of the interacting systems precisely coincide and that differences in 

phase remain constant. In the presence of noise (or for chaotic systems) one can weaken 

the requirements such that the periodicities only have to coincide on average, and the 

phase differences are allowed to move within certain bounds. One may also accept 

occasional phase slips, provided that they do not occur too often (Stratonovich 

R.L.1983). 
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One-to-one synchronization is only a simple manifestation of a much more general 

phenomenon, also known as entrainment, mode locking or frequency locking. In non-

linear systems, a periodic motion is usually accompanied by a series of harmonics at 

frequencies of p times the fundamental frequency, where p is an integer. When two 

non-linear oscillators interact, mode locking may occur whenever a harmonic frequency 

of one mode is close to a harmonic of the other. As a result, non-linear oscillators tend 

to lock to one another so that one subsystem completes precisely p cycles each time the 

other subsystem completes q  cycles, with p and q  as integers (Thompson, J. 1986; 

Glass, L. and Mackey, M.C. 1988). An early experience with this type of phenomenon 

is the way one excites a swing by forcing it at twice its characteristic frequency, that is, 

you move the body through two cycles of a bending and stretching mode for each 

swing. A similar phenomenon is utilized (in optics, electronics, etc.) in a wide range of 

so-called parametric devices.  

Contrary to the conventional assumption of homeostasis, many physiological systems 

are unstable and operate in a pulsate or oscillatory mode (Glass, L. and Mackey, M.C. 

1988 ; Leng, G.1988).  

The beating of the heart, the respiratory cycle, the circadian rhythm, and the ovarian 

cycle are all examples of more or less regular self-sustained oscillations. The ventilatory 

signal is clearly visible in spectral analyses of the beat-to-beat variability of the heart 

signal, and in particular circumstances the two oscillators may lock together so that, for 

instance, the heart beats three or four times for each respiratory cycle (Schafer, C. et 

al.,1998). The jet lag experienced after a flight to a different time zone is related to the 
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synchronization of the internal rhythm to the local day-and-night cycles, and it is often 

said that women can synchronize via specific scents (pheromones) if they live close 

together. 

Rhythmic and pulsate signals are also encountered in intercellular communication 

(Goldbeter, A. (ed.). 1989). Besides neurons and muscle cells that communicate by 

trains of electric pulses, examples include the generation of cyclic pulses in slime mold 

cultures of Dictostelium discoideum (Goldbeter, A. and Wurster, B. 1989) and the 

newly discovered synchronization of the metabolic processes in suspensions of yeast 

cells  (Dano, S. et al.,1999). Synchronization of the activity of the muscle cells in the 

heart is necessary for the cells to act in unison and produce a regular contraction. 

Similarly, groups of nerve cells must synchronize to produce the characteristic rhythms 

of the brain or to act as pacemakers for the glands of the hormonal systems  (Kopell, N. 

et al.,2000). On the other hand, it is well known that synchronization of the electrical 

activity of large groups of cells in the brain plays an essential role in the development of 

epileptic seizures (Mormann, F. et al., 2000). However, non-linear oscillators may also 

display more complicated forms of dynamics, and an interesting question that arises 

over and over again in the biological sciences concerns the collective behavior of a 

group of cells or functional units that each display strongly nonlinear phenomena 

(Kaneko, K.,1994). 

In the economic realm, each individual production sector with its characteristic capital 

life time and inventory coverage parameters tends to exhibit an oscillatory response to 

changes in the external conditions. Overreaction, time delays, and reinforcing positive 
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feedback mechanisms may cause the behavior to become destabilized and lead to 

complicated nonlinear dynamic phenomena. The sectors interact via the exchange of 

goods and services and via the competition for labor and other resources. A basic 

problem for the establishment of a dynamic macroeconomic theory is therefore to 

describe how the various interactions lead to a more or less complete entrainment of the 

sectors. Synchronization can be with or without delay. 

 

1.5.1 Synchronization without Delay. 

Consider n subsystems ( ) n

j jz z t R= ∈ ,  ( 2)n ≥    1, 2,....,j n=  with the dynamics of 
j

z  

given by the solution of the Equation; 

                                   ( )
j j j

z f z=�                                                                               (1.21) 

Let there be a compact global attractor for each j  (Hale, J. 1997). That is, there is a 

compact set which is invariant under the flow defined by (1.21) and the ω -limit set of 

each orbit of (1.21) belong to this set.  

Now, suppose that these sub-systems are coupled with linear terms to obtain the 

differential system for z as; 

                                  ( ) ( ) ( ( )),
k

z t A z t f z t= +�                                                             (1.22) 



 

 

31 

 

where 1 1 2 2( ( )) ( ), ( ),....., ( )
n n

f z t f z f z f z=  and 
k

A  is a real symmetric matrix depending 

upon a parameter 1 2 3( , , ,...., ) d

d
k k k k k R= ∈  and the state vector ( ) nz t R∈  with 0k ≥ . 

Suppose also system (1.22) has a compact global attractor 
k
A  for each k , then we say 

that the system (1.22) is synchronized if the global attractor belongs to the diagonal in 

nR  defined as 1 2 ......
n

z z z= = = , (Fujisaka et al., 1983). If z belongs to the attractor, it 

implies that the differences ( ) ( ) 0
j i

z t z t− →  as t → ∞  for all ,i j . For the system to be 

synchronized , the diagonal must be an invariant set under the flow defined by Equation 

(1.22), which will be the case if all the 
j

f  are the same (the dynamics of the sub-system 

are identical) and the matrix 
k

A  has zero as an eigenvalue with the diagonal being the 

corresponding eigenspace. In this situation, all the other eigenvalues of 
k

A  must be non-

positive for the stability of the synchronous state. 

 For coupled identical systems, the diagonal of the system is invariant; synchronization 

is thus equivalent to the attracting property of the diagonal. The attractivity of the 

diagonal is determined by the Lyapunov exponents normal to the diagonal. If all the 

Lyapunov exponents normal to the diagonal are negative, then the coupled oscillators 

are synchronized ( Enrico et al., 2005). 
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1.5.2 Synchronization with Delay 

Suppose the sub-systems in Equation (1.21) are coupled with linear terms to obtain the 

differential Equation for
j

z  in the form; 

                       ( ) ( ( ), ( )) ( ( ))
j i j j j

z t g z t z t f z tτ= − +�    i j≠  , , 1, 2,.....,i j n=              (1.23) 

where g is the coupling function, 0τ ≥  is the time delay in the interaction. A 

synchronous state for the system is a solution of Equation (1.23) such that 

                         1( ) ( )
j j

z t z t+= ,     1 1j n≤ ≤ −                                                           (1.24) 

for all t . This state lies on the synchronized manifold defined as; 

                          1 1 2{ : ...... 0}n

n
z R z z zΘ = ∈ = = = ≠ . 

Given asymmetric initial conditions, we say that the system synchronizes if Equation 

(1.24) holds asymptotically. It follows from the definition that, for a synchronous state, 

we have; 

                          1lim( ) 0
j j

t
z z +

→∞
− = ,         1, 2,......, ( 1)j n= −   

More generally, let ([ ,0], )nC Rτ= −� , be a set of continuous functions defined from 

[ ,0]τ−  to nR . Let the norm of the element Cφ ∈  be defined as 

{ }sup ( ) : 0φ φ θ τ θ= − < < , where ( )φ θ  denotes the Euclidean norm of ( )φ θ . The set 
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C equipped with this norm is a Banach space. Let 1 2( , ,.... )
n

z z z z=  and take the space of 

initial function for Equation (1.23) to be in C.  For any Cϕ ∈ , Eqn. (1.23) has a unique 

solution ( , )z t ϕ .  If 1 2( , ,......, )
n

ϕ ϕ ϕ ϕ=  with 1 2 3 .........
n

ϕ ϕ ϕ ϕ= = = =  an initial 

manifold (Hale, J. 1997), then the solutions of (1.23) will be synchronized if  

1( ( ) ) 0
j j

z t z +− →  as t → ∞ , 1 1j n≤ ≤ −  
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1.6 LITERATURE REVIEW 

Coupled oscillators have been studied extensively. The emphasis in many of the studies 

has been on coupling of oscillators that have a stable limit cycle. The nature and type of 

coupling have played a significant role in determining the regime of the dynamical 

behavior of the population of oscillators. Most types of coupling have led to problems 

which are easy to treat both numerically and analytically. Coupling with time lag seems 

to have received little attention both numerically and analytically. 

Perkel et al., 1964, measured the phase resetting function ( )F φ , in invertebrate neurons 

that act as pacemakers that they spontaneously and repetitively fire action potentials in a 

periodic manner. They induced precisely timed inhibitory or excitatory synaptic 

potentials in the pacemaker cell by evoking an action potential in an excitatory or 

inhibitory presynaptic neuron. The function ( )F φ  tabulates the change in cycle length 

as a function of the phase at which the perturbation was applied. This function is often 

normalized by the intrinsic unperturbed period. The opposite sign convention is used 

rather than the one used in that article in order to be consistent with the literature on this 

subject.  

Peskin., 1975, considered synchronization in a network of two mutually excitatory 

pulse-coupled leaky integrate and fire neural oscillators.  

0 ( ).
dv

S V t
dt

γ= −  
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The pulsatile coupling resulting from the firing of one oscillator caused the voltage of 

the second oscillator to instantaneously become more depolarized by a fixed amount.  

This implicitly defines a phase resetting curve because if a perturbation is received at 

time , the next spike will be advanced by an amount that can be calculated using the 

explicit solution for the differential equation that describes the leaky integrate and fire 

oscillators,  

0ln(1 )
( ) ,

A
S e

F
A

φγ
φ

−
= where 0

0

ln
S

A
S γ

=
−

 with 0S γ≠ and 0 0S ≠ .  

He derived a return map for the phase of the non-firing oscillator immediately after its 

partner fired, with the oscillators reversing roles on each map iteration. This mapping 

was proved to have a unique and unstable fixed point. This fixed point repelled 

trajectories toward synchronization at a phase of zero or one. Once the oscillators 

synchronize, the coupling term drops out because each neuron is already at threshold 

when its partner fires, hence synchronization results for every set of initial conditions.  

Mirollo et al.,1990,  generalized these results to any two coupled oscillators in which 

the state variable (that is, the membrane potential V) is a smooth monotonically 

increasing and concave down function, as it is for the leaky integrator. The pulse 

coupling when one oscillator fired depolarized the other by an amount ε or pulled it up 

to the firing threshold, whichever was less. A return map was again formulated in terms 

of the phase of the non-firing oscillator immediately after its partner fired. This 

mapping was proven to have a unique fixed point which was unstable. Once again the 
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firing is globally repelled toward synchrony where the coupling term disappears 

allowing the synchronized state to exist.  

The work presented so far on two identical coupled oscillators focused exclusively on 

excitation that leads to synchrony, that is, a phase locking with no phase difference 

between the oscillators. For identical oscillators, in which the coupling term drops out at 

a phase of 0 and 1, synchrony is always a solution. However, other solutions are 

possible, and for systems in which the phase resetting does not disappear at 0 and 1 

synchrony may not be a solution. Therefore this criterion is required for both existence 

and stability. The above derivation did not apply to exact synchrony because the 

assumed firing order could not be guaranteed for a small perturbation from synchrony.  

Gransen et al., 1979, studied the system of Equations of the form; 

                         

                     

1 1

1 1 1 2

2 2
2

2 2 2 1

( ( ))

(1 ) ( )

( )

(1 ) ( )

i

V f U
U

V q U U t

V f U
U

V q U U t

ε

δ δ τ

ε

δ δ τ

− 
= 


= − − + − 


− =




= − − + − 

�

�

�

�

                                                            (1.25) 

where 
i

U ,  
i

V , 1,2i =  are real state variables, 
3

( )
3

x
f x x= −  is a real valued smooth 

function of the real state variable, δ  is a very small positive parameters , 
i

q , 1,2i =  are 

arbitrary constants representing the difference of the autonomous periods of the 

oscillators, 0τ ≥  is a real  constant representing a delay in the coupling. 
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Synchronization was investigated by means of a phase shift ( )z µ  that is 0T  periodic 

( 0T  being the period of a single oscillator) function of the phase difference  µ  of the 

oscillators. The following results were obtained; 

(i) For 0τ = , when ' '(0 ) (0 ) 0z z+ −+ < . Two oscillators with equal free period 

have a stable synchronized solution with equal phases. The synchronized 

solution has a period greater than the free period when (0) 0z < . The 

synchronized solution has a period less than the free period when (0) 0z > . 

(ii) With 0τ >  but very small and identical oscillators, the stable synchronized 

stable 0µ =  splits in two stable state µ µτ= ± , with 0µτ →  as 0τ → . 

(iii) With a small 0τ >  and for oscillators with unequal free periods, 

synchronization only occurs if the difference of the free periods is within 

certain bounds. 

Only a small delay in one variable was considered. The dynamics of the system in 

Equation (1.25) when coupling involves all the variables was not addressed. 

Fujisaka et al., 1983, developed the general stability theory of synchronized motions of 

coupled oscillator systems with the use of extended Lyapunov matrix approach. They 

gave an explicit formula for a stability parameter of the synchronized state by 

considering the following system; 

                             
ˆ

( ) ( ( )) ( ) ( ( ) ( ))
2

j j i j

i

D
x t f x t conf x t x t= + −∑� ,   1, 2,.....,j n=        (1.26) 
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where ( )
j

x t  denotes the state vector of the thj oscillator , D̂  certain coupling constant, 

i

conf∑  the summation over the given configuration of coupling. Three systems of 

configurations were considered; 

(i) All oscillators coupled; 

                        
1

( ) ( )
nN

i j i j

i i

conf x x x x
=

− = −∑ ∑ , 

(ii) Only nearest neighbor oscillators coupled under periodic boundary 

conditions;  

                          ( 1) ( 1)( ) 2
i j j j j

i

conf x x x x x− +− = + −∑ , 1( ) ( )
n

x t x t=         (1.27) 

(iii) Only nearest neighbor oscillators coupled with Neumann boundary 

conditions; 

                            ( 1) ( 1)( ) 2
i j j j j

i

conf x x x x x− +− = + −∑ , 2,....., 1j n= −   (1.28)  

The eigenvalues { }
j

c  of the coupling matrix  ˆ
jiA A=  defined through 

( )
i j ji i

i i

conf u u A u− =∑ ∑  where
j

u  is the deviation from the synchronized state, were 

determined as;                     

 System  I         : 0, , ,.....,n n n                                            2n ≥  

 System  II        :  20, 4sin ( ) 1, 2,...., 1
k

k n
n

π
= −                  3n ≥  

 System  III       :   20, 4sin ( ) 1, 2,...., 1
k

k n
n

π
= −                  2n ≥                              (1.29) 
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The stability of the synchronized state was studied by defining 1 ˆˆlim ln{ ( , )}j j
t

t u D t
−

→∞
Λ =  

where;                         

                                                      
0

ˆ
ˆˆˆ ( , ) exp ( )

2

t

j

j

c D
u D t G s ds

     
= −   

    
∫ , 

                                                      
, 1

( ) [ ( ) ] [ ]
( )

n
i

ij i j
j

f
G t G t

x t=

∂
= =

∂
, 

where ( )
j

u t  is the deviation from the synchronized state and ˆ( )u t is a matrix satisfying; 

                                                       ˆˆ ˆ( ) ( ) ( ),u t G t u t=�      ˆ(0) 1.u =     

The largest eigenvalue (Lyapunov exponent) is given by; 

                                          max(Re )
L j

λ λ= , 

where 
j

λ are eigenvalues of
j

Λ . The synchronized state is stable or unstable accordingly 

as; 

                                          0
L

λ ≤  (Or 0
L

λ >  ). 

In this analysis finer points such as the effect of time lag in the stability of the 

synchronous state were left out. 

Hale,1997, studied the dynamics of the system of the form; 

                                             ( )
j j

z g z=�                                                                      (1.30) 

where 1 2( , ,...., )T

n
z z z z= , d

jz R∈ , 1 j n≤ ≤ , ( , )r d dg R R∈� , 1r ≥ . 

For any initial condition in dR , solution of Equation (1.30) has a compact global 

attractor. The system of Equation (1.30) was coupled to take the form; 
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                                            ( )z k z f z= ∆ +�                                                                (1.31)  

with 1 2( ) ( ( ), ( ),....., ( ))
n

f z g z g z g z= , k is a positive constant representing the coupling 

strength and the matrix ∆  is given by; 

 

                    





























−

−

−

−

=∆

II

II

III

II

...0000

2...0000

........

.......

.......

00...20

00...00

 

with 
d

I I=   The following results were obtained; 

(i) For each 0k > there is a global attractor 
k
A which is uniformly 

bounded in k . 

(ii) There is 0 0k ≥  such that system (1.31) is synchronized for 0k k≥ . 

The nearest neighbor scalar coupling was considered and no effort was made to address 

the dynamics of system (1.31) when time lag is involved in the coupling. 

Pyragas, 1998 studied two directly coupled Mackay Glass equations of the form; 

                          

( )

( ) ( )

x f x c

y f y c k x y

τ

τ

= − 


= − + − 

�

�

                                                                 (1.32) 

where ( )
1 b

ax
f x

x

τ
τ

τ

=
+

, ( )x x tτ τ= − , ( )y y tτ τ= − , ,a b  and c  are parameters to be 

chosen. The term  ( )k x y−  represents a dissipative coupling, with k as the coupling 
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strength. Analytic expression relating synchronization threshold to the maximum 

Lyapunov exponent of uncoupled driving and response subsystems was derived as  

                             

1
0 2

2

0

2

( )
1

( ) lim ln

( )
t

t d

k
t

d

τ

τ

θ θ

λ

θ θ

−

→∞

−

 
∆ + 

 =
 

∆ 
 

∫

∫
 

where y x∆ = −  are small deviations from the synchronized manifold. θ∆  is the initial 

solution on the interval [ ,0]τ−  and ( )t θ∆ +  is the initial solution on the interval 

[ , ]t tτ− . The analytical results were then compared with the numerical solutions for the 

system, by setting the parameters ,a b  and c  fixed at 0.2a = , 10b =  , 0.1c =  . The 

following results were obtained; 

(i) For 0.471 1.33τ< <  there is a stable limit cycle. 

(ii) A period double bifurcation sequence was observed 

for1.33 1.68τ< < . 

(iii) For 1.68τ > , numerical solutions show chaotic attractors at most 

parameter values. 

Though the analysis was thorough numerically, only driving response subsystems were 

considered. The dynamics of two or more oscillators coupled all-to-all was not 

considered.  

Wasike, A. 2003, studied oscillators whose dynamics were governed by the solution to 

the Equation; 

                          
2

( )
j j j j j

z Az z z g z= − =�                                                                 (1.33) 
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where 
1 1

1 1
A

− 
=  
 

, 2( )j jz z t R= ∈ , 1, 2,....,j n= . 

The oscillations in Equation (1.33) were coupled in one, two, and three dimensional 

Bravis Lattice structure. On one dimensional lattice, the governing Equation was;  

                            ( ) ( )z B k z f z= +�                                                                            (1.34)  

where 1 2( , ,...., )T

n
z z z z=  denotes the coordinates of a point on the lattice, ( )B k  is a real 

symmetric matrix depending on the coupling strength 0k ≥  and is given by 

1( )B k k L= ∆ ⊗  with; 

 

                  

































−

−

−

−

−

=∆ .

110...0000

121...0000

........

........

........

000...1210

000...0121

000...0011

1  

 

and 
1 1

1 1
L

 
=  
 

. 

 

He analyzed Equation (1.33) considering the coordinate transformation; 1j j j
w z z += − , 

1 j n≤ ≤ , 
1

1 n

j

j

y z
n =

= ∑ . The following results were found; 
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• There is 0
o

k >  such that for n  even, equation (1.33) has an anti-symmetric 

solution for all 0
o

k k< < and there is oscillator death for 
o

k k> ,where the 

invariant sub-space { }2

1: ( 1) 0n j

j j
z R z z+Π = ∈ = − ≠ , 1 1j n≤ ≤ −  defines the 

anti-symmetric synchronization. 

• Symmetric synchronization persists for all coupling strength. The invariant 

subspace { }2

1 1 2: .... 0n

n
z R z z zΘ = ∈ = = = ≠  defines symmetric 

synchronization.  

In his study, nearest neighbor coupling was considered. However, in this case, the 

dynamics of the network of oscillators coupled together with the effect of time lag was 

not considered. 

Enrico, R. et al., 2005, studied the synchronization dynamics of a system of two 

identical Hodgkin-Huxley (HH) neurons coupled diffusively. The model equation they 

studied was of the form; 

                              ( , ) [ ( ) ]i ion i i ext j iV I V S I V t Vε τ= + + − −� , i j≠ , , 1,2i j =                (1.35)  

 

where ε  is the coupling strength, 0τ ≥ is the delay in the interaction, V is the 

membrane potential and  3 4( ) ( ) ( )
ion Na k k L L

I gNam h V V dt g n V V dt g V V= − − − − − −  is the 

total ionic current, 
ext

I  is an externally applied current which is assumed to be constant, 

and ( , , )
i i i i

S m h n=  is the state variable. The stability of the synchronous state of 



 

 

44 

 

equation (1.35) was studied by defining ( , , , )
i i i i i

z v m h n=  and 1 1( ,0,0,0)ε ε=  so that 

the Equation (1.35) is written as; 

                              1( ) ( ( )) [ ( ) ( )]
i i j i

z t F z t z t z tε τ= + − −�    , 1,2i j =  , i j≠                (1.36) 

where 1 0ε >  is the coupling strength. The synchronous state z (t) is the solution of; 

                               1( ) ( ( )) [ ( ) ( )]z t F z t z t z tε τ= + − −�  

By defining 2 1z z z⊥ = −  as the transverse vector to the synchronous state, and 

linearising equation (1.35) around the synchronous state, they obtained; 

                                1( ) ( ( )). ( ) .( ( ) ( ))z t J z t z t z t z tε τ⊥ ⊥ ⊥ ⊥= − − +�                                (1.37) 

where the matrix (.)J DF=  is the Jacobian of  F. The stability of the synchronous state 

is thus related to the Lyapunov exponents associated with Eqn. (1.37). The synchronous 

state is stable if all the Lyapunov exponents are negative. They did not provide an 

analytical analysis for the stability of the synchronized state or range of values of τ  for 

stability of synchronous state. The oscillators considered were only two.  

I was motivated to carry out this research out of the Literature review cited. This is 

because much seems not to have been done on synchronization of n all-to-all coupled 

oscillators.  That is why we studied a population of n oscillators each with an 

asymptotically stable limit cycle coupled all-to-all by a linear diffusive like path with a 

time lagτ . A limit cycle is asymptotically stable if any trajectory with initial value 

nearby of the limit cycle tends to the limit if the time goes to infinity. Each of the 

oscillators was considered to have its own intrinsic natural frequency and each is 

coupled equally to all other oscillators 
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The system of equations was inbuilt with symmetries which we were exploited to get an 

analytic understanding of the dynamics of the system. The symmetries in the coupling 

terms were studied to establish the range of time delay τ for stability of synchronized 

state, and then the trajectories of the two manifolds were computed. 

Since models represent an approximation of the real phenomenon, perturbation is 

inevitable and thus we studied the ability of the synchronized manifold to be insensitive 

to some small perturbations.  

 

1.7 STATEMENT OF THE PROBLEM 

Oscillators described by ordinary differential equations were considered.  To obtain an 

asymptotically stable periodic solution for each oscillator, an appropriate system of 

ODEs which must be necessarily non linear and have at least two state variables should 

be considered. These oscillators were described by a differential equation of the form: 

( ) ( )    (  , )ż t f z t µ=                                                                                                 (1.38) 

where z ∈ R
n
 is an n-dimensional real state variable, µ ∈ R

p
 is a p-dimensional real 

parameter, n and p are natural numbers such that, n ≥ 2 and p ≥ 1, f in a non linear 

smooth function from  

R
n
 x R

p
 → R

n
 

The dynamical behavior of oscillators with a time lag in all variables involved in the 

coupling and oscillators coupled all-to-all i.e.,each oscillator coupled to all the others, 

was studied by considering n-oscillators each with an asymptotically stable limit cycle, 

coupled all-to-all by a linear diffusive path with time lagτ  .  Oscillators with d state 
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variables, with 2d ≥  were considered so as to study dissipative oscillators coupled to 

their nearest neighbor by a diffusive like path via a linear and planar simple Bravais 

lattices.  Each oscillator was described by a system of ODEs whose behavior is 

governed by the solution of the equation;  

 ( )j j
ż g z=                                                                                                      (1.39) 

where g is a function taking R
2
 x R → R

2
 and is continuous with 2

j jz =z (t)  ∈ R  

Suppose that equation (1.36) is coupled, that is; 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

.

1 1 1

2

.

2 1 2 2

3

1.

1

1 ,

1 ,

1

n

i

i

n

i

i

n

n i n n

i

z t kI n z z t g z t

z t kI z t n z t z t g z t

z t kI z t n z t g z t

τ

τ τ

τ

=

=

−

=

 
= − − + − +  

  



  = − − − + − +  
 


 

= − − − +  
  



∑

∑

∑

� � �

                             (1.40) 

where k is the coupling strength and 0>τ  is delay.  

Coupled oscillators dynamical behavior can generally be described by the following 

equation: 

( ) ( ( ), ( )) ( ( )),z t kB z t z t f z tτ= − +�                                                                               (1.41) 

where 0k >  is the coupling strength, 1( ) ( ( ),.., ( ))
n

z t z t z t= , ( ( ), ( ))kB z t z t τ−  is a linear 

operator describing the coupling of different 

configurations, 1( ( )) ( ( ( ),................. ( ( )))
n

f z t g z t g z t=  and 0τ >  is the time lag. 
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For situations where there is no time lag, Eq. (1.41), reduces to; 

( ) ( ( )) ( ( )),z t kB z t f z t= +�                                                                                            (1.42) 

where in this case  ( ( ))B z t describes the diffusive like coupling configuration and 

( ( ))f z t  is the function describing the behavior of the site oscillator. 

From the literature review, we notice that the researchers have considered the term 

( ( ), ( ))kB z t z t τ−  for the following cases: 

(i) For two oscillators with 0τ >  and only one variable involved in the 

coupling,  

(ii) For a large and finite number of oscillators without delay and all variables 

involved in the coupling. 

Dynamical behavior of oscillators with  ( ( ), ( ))kB z t z t τ−  involving a delay seems to 

have received little or no attention in research. We wish to study this particular scenario. 

Using Eq. (1.39) , we can choose ( )( )j
g z t  of the form; 

 ( )( )
( )

( )

1

2

,

,

j

f x y

g z t

f x y

 
 

=  
 
 

 

where;  

 

( )
3

1 ,
3

x
f x y y xα

 
= − − 

 
           0α >                                                           (1.43) 

( )2 ,f x y x= −  
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The choice of 
i

f  was as equation (1.43) because in most diffusive path-like problems, 

for instance Chemistry where coupling is effected by the flow of reactants from one 

reactor to the other, the flow of various reactants through the connecting medium of the 

coupled oscillators is the same. Thus a time delay is required for 
i

x to be transferred 

from oscillator i to oscillator j and vice versa.  

The coupled Eq. (1.42) can be written compactly as; 

( ) ( ) ( ) ( ) ( )( )
.

1,

1
n

j j i j

i i j

z t kI n z t z t g z tτ
= ≠

 
= − − + − + 

 
∑                                               (1.44) 

 

Equation (1.44) describes oscillators coupled all to all by a linear diffusive terms.  

Equations (1.41), (1.42) and (1.44) will be studied with an aim of meeting the following 

objectives; 
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1.8 OBJECTIVES OF THE STUDY 

 

We aimed at achieving the following objectives in our study; 

� Investigating the dynamical behavior of n oscillators coupled to one another 

with a time lag τ  in all variables involved in the coupling,  

� Investigating, both analytically and numerically, the effects of the time lag in the 

stability of the synchronized manifold, 

� Establishing the nature of synchronous frequency by considering very small 

coupling strength and when the coupling strength is increased and 

� Studying the stability of synchronization manifold under perturbation and give 

the conditions under which the synchronization manifold is said to be robust. 

                

1.9 SIGNIFICANCE OF THE STUDY 

The nature and type of coupling have played a significant role in determining the 

regime of the dynamical behavior of a population of oscillators. Most types of coupling 

have led to problems which are easier to treat both numerically and analytically. 

Coupling with time lag appears to have received little attention .The above study can 

get its application in; Neurobiology, Laser arrays, Microwave devices, Communications 

satellites and electronic circuits. For instance in the case of microwave devices; When 

two microwave oscillators operate physically close to one another, the output signal of 

each may affect the behavior of the other. Since the frequencies are above the 10 GHz 

range, the time for light to travel from one oscillator to the other, a distance of the order 



 

 

50 

 

of centimeters, represents a substantial portion of the period of the uncoupled 

microwave oscillator. This immediately leads to the inclusion of delay effects in the 

coupling terms. 

Advances in understanding of non-linear dynamical systems have led to the interest in 

developing practical applications for chaotic dynamics in communications systems. 

Understanding semiconductor laser dynamics has been simulated by the possibilities of 

achieving fast secure communication systems which exploit the properties of chaos 

synchronization. Chaotic communications may, in particular, be effected by mixing the 

message signal with the output from a chaotic transmitter and then recovering the 

message from the received signal. 

The possibility of encoding messages within a chaotic carrier was first proposed in 

electronic circuits (Cuomo, K.M. et al., 2008) and later in solid state lasers (Colet,P.et 

al., 1993), in semiconductor lasers (Mirasso,C. R. et al.,2005) The chaotic output of a 

transmitter system is used as a carrier in which a message is encoded. The amplitude of 

the message is much smaller than the typical fluctuations of the chaotic carrier, so that 

is very difficult to isolate the message from the chaotic carrier. Decoding is based on the 

fact that coupled chaotic systems are able to synchronize their output if the appropriate 

conditions are given. To decode the message, the transmitter signal is coupled to 

another chaotic system, the receiver, which is similar to the transmitter. The receiver 

synchronizes with the chaotic carrier itself, so that the message can be recovered by 

subtracting the input and output of the receiver.  
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Apart from electronic circuits, lasers remain the only physical systems for which 

laboratory experiments have demonstrated chaotic synchronization. Immediately after 

chaotic laser synchronization was demonstrated, efforts began to apply this new 

phenomenon to optical communications. A strong motivation was the possible 

“security” of such communication methods. A couple of years ago, the first experiments 

were performed to illustrate the concepts of communication using amplitude and 

frequency fluctuations of chaotic optical systems. The use of irregular chaotic 

waveforms and synchronization for communication is a generalization of century-old 

techniques for radio communication. Message recovery through synchronization may 

also be considered a variation of auto-correlation measurements in optics that recover a 

sequence of time-dependent perturbations made on a physical system, constituting the 

message. It offers the possibilities of increased privacy, recovery of distorted signals, 

multiplexing that will be realized in near future!  
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CHAPER TWO 

2.0 LYAPUNOV EXPONENTS 

In this chapter, a method due to Lyapunov, which is very useful in establishing the 

stability of a non-hyperbolic equilibrium point, is generally presented. It is the one used 

in the analysis of the analytical solution in chapter three.  

2.1 MAXIMUM LYAPUNOV EXPONENT 

Chaotic systems display a sensitive dependence on initial conditions. Such a property 

deeply affects the time evolution of trajectories starting from infinitesimally close initial 

conditions, and Lyapunov exponents are a measure of this dependence. These 

characteristic exponents give a coordinate independence measure of the local stability 

properties of a trajectory. If the trajectory evolves in an N-dimensional state space, there 

are N exponents arranged in decreasing order, referred to as the spectrum of Lyapunov 

exponents; 

                                1 2 3.............. nλ λ λ λ                                                                          (2.1) 

Conceptually these exponents are a generalizations of eigenvalues used to characterize 

different types of equilibrium points. 

A trajectory is chaotic if there is at least one positive exponent, the value of this 

exponent, said to be the maximum Lyapunov exponent, give a measure of the 

divergence rate of infinitesimally close trajectories and of the unpredictability of the 

system and gives a good characterization of the underlying dynamics  (Walker, J. A. 

1980). 
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For a dynamical system with evolution equation tf ( An equation that can be 

interpreted as the differential law of the development (evolution) in time of a system.) 

in n-dimensional phase space, the spectrum of Lyapunov exponents describe the 

behavior of vectors in the tangent space of the phase space and are defined from the 

Jacobian matrix; 

 

                              ( )

o

t
t

o

x

df
J x

dx
=                                                                                (2.2) 

 

The tf  matrix describes how small change at the point 
o

x  propagates to the final 

point ( )t

o
f x . Let the limit,     

1

2lim( .( ) ) ( )t t T

o
t

J J L x
→∞

=                                                 (2.3) 

where ( )t TJ  is the transpose of the matrix ( )tJ , defines a matrix ( )
o

L x . 

If ( )
i o

xΛ are the eigenvalues of ( )
o

L x  , then the Lyapunov exponents 
i

λ are defined by; 

                               ( ) log ( )
i o i o

x xλ = Λ                                                                         (2.4) 

The set of Lyapunov exponents will be the same for almost all starting points of an 

ergodic component of the Dynamical system (Perko. L. 1991).  

If a system is conservative (i.e., if there is no dissipation), a volume element of the 

phase space will stay the same along a trajectory. Thus the sum of all Lyapunov 

exponents must be zero. If the system is dissipative, the sum of the exponents is 

negative. 



 

 

54 

 

If the system is a flow, one exponent is always zero-the Lyapunov exponent 

corresponds to the eigenvalue of ( )
o

L x with an eigenvector in the direction of the flow. 

2.2 SIGNIFICANCE OF LYAPUNOV SPECTRUM 

The Lyapunov spectrum can be used to give an estimate of the rate of entropy 

production and of the fractal dimension of the considered dynamical system. In 

particular, from the knowledge of the Lyapunov spectrum, it is possible to obtain the so 

called Kaplan-Yorke dimension  
KY

D  that is defined by; 

                                 
1 1

k
i

KY

i k

D k
λ

λ= +

= +∑                                                                       (2.5)    

where k  is the maximum integer such that the sum of the k -largest exponent is still 

non-negative (Grassberger, P. et al.,1983).  The Kaplan-Yorke dimension  
KY

D  

represents the upper bound for the information dimension of the system. Moreover, the 

sum of all positive Lyapunov exponents gives an estimate of the Kolmogorov-Sinai 

entropy according to Pesin’s theorem, (Pesin, Y.B. 1977). 

The inverse of the largest Lyapunov exponent is sometimes referred to as Lyapunov 

time and it defines the characteristic e-folding time. For chaotic orbits, the Lyapunov 

time will be finite, whereas for regular orbits it will be infinite. 

2.3 CALCULATION OF MAXIMUM LYAPUNOV EXPONENT 

2.3.1 Introduction 

Consider two orbits, a “reference” orbit and a “test” orbit, separated at time 
o

t by a 

small phase space
o

d . We will use the test orbit as a means of calculating the value of 
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the maximum Lyapunov exponent. Under the evolution of the equations of motion, the 

two orbits may (or may not) separate. If the motion is chaotic, the orbits will, by 

definition, separate at an exponential rate. The maximum Lyapunov exponent λ is a 

measure of this rate of separation and is given by; 

 

                                       
1 ( )

lim ln
t

o o

d t

t t d
λ

→∞
=

−
                                                             (2.6) 

Ideally, ( )tλ  settles to approximately its asymptotic value, if indeed it is non-zero for 

the orbit of interest after some time (Marc, A.M. 1985).  A simple method of calculating 

( )tλ is as shown in section (2.3.2). Another practical problem is that, for chaotic orbits, 

the distance between reference and test particles, ( )d t , quickly saturates. Hence we must 

periodically renormalize the orbit separation. 

2.3.2 Exponent Calculation 

Whenever the separation ( )d t has passed beyond a threshold value D , the test orbit is 

rescaled and not the reference orbit. It is important that D  be set small enough that it is 

still in the linear regime (i.e., the regime in which the linearized equations of motion are 

an accurate description). Define a rescaling parameter: 

 

                                  1
1

( )

( )
o

d t

d t
α ≡                                                                                   (2.7) 

where 1t  is the time at which ( )d t D≥ . Then we can write  
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                                    1
1 1

1 1

1 1
ln ln

o o o

d

t t d t t
λ α= =

− −
                                                   (2.8) 

where  ( )
i i

tλ λ≡  and ( )
i i

d d t≡ . At this point, the test orbit is then rescaled, as shown 

in section (2.3.3). Similarly, for successive threshold crossings and subsequent 

rescaling, we have; 

 

                                     

2 1
2 1 2

2 2

3 2 1
3 1 2 3

3 3

.1 1
ln ln( )

. .1 1
ln ln( )

.

.

.

.

o o o

o o o

d

t t d t t

d

t t d t t

α
λ α α

α α
λ α α α


= = − −




= = − − 







                            (2.9)  

 The multiplicative factors      1 1 2, . ,.......α α α are derived in section (2.3.4), and in case it 

is not intuitively obvious. Therefore the instantaneous Lyapunov exponent is given by; 

 

                                          
1

1
ln

n

n i

in ot t
λ α

=

=
−
∑                                                           (2.10) 

where we have defined  

 

                                          
( )

( )

i
i

o

d t

d t
α ≡                                                                         (2.11) 
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This construction is valid as long as the rescaling takes place in the linear regime (Wolf, 

et al., 1986).  Notice that, in a computer, only the accumulative sum of the natural log 

of iα , need to be stored. In addition, the time intervals need not be evenly spaced. 

2.3.3 Renormalization of the Test Orbit 

The rescaling of the test particle orbit is performed on the test-reference phase space 

distance vector. Whenever the distance ( )d t  becomes greater than or equal to the 

threshold D , we scale the test particle distance from the reference particle by the 

factor
1

iα
, maintaining the current relative orientation between the two particles in phase 

space. Write the reference and test particle phase space vectors as; 

 

 

                                           
x

y

z ref

x

y

z
R

v

v

v

 
 
 
 

=  
 
 
 
 
 

��
 and 

x

y

z test

x

y

z
r

v

v

v

 
 
 
 

=  
 
 
 
 
 

�
                                            (2.12) 

 

 

Define r Rρ ≡ −
�� � ��

. Then the adjustment to the test particle phase space coordinates at 

time it  is ; 
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                                             i
i

i

r R
ρ

α
← +

��
� ��

                                                                  (2.13) 

Alternatively, one could write the equivalent expression as;  

                                           
1

.i
i i i

i

r r
α

ρ
α

−
← −
� �

                                                           (2.14) 

All we are doing is rescaling the distance ( )d t , 

                                          
( )

( ) i
i

i

d t
d t

α
←                                                                    (2.15) 

in an appropriate direction in phase space. Any difference between using the full phase 

space distance; 

                                        2 2 2 2 2 2

x y z
x y z v v v+ + + + +                                             (2.16) 

and using only the configuration space distance 

                                          2 2 2
x y z+ +                                                                   (2.17) 

is indiscernible. 

2.3.4 Explanation of Summation 

In this section for completeness, we derive the multiplicative factors in the distances in 

the logarithms in Eq. (2.10) and the equations leading up to it. Consider Eq. ( 2.6). At 

time 1t ; 

                                           1 1

1

t

o
d d e

λ=                                                                        (2.18) 

Upon rescaling,  

                                           
1 1

1

1

t

o
d e

d
λ

α
←                                                                     (2.19) 
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At the next rescaling time 2t , 

                                           1 2 1( )

2 1

t t
d d e

λ −=                                                                   (2.20) 

where  1d is the rescaled value (i.e., 
o

d ) inserting equation (2.19) for 1d , we have 

                                          
2 2

2

1

t

o
d e

d
λ

α
=                                                                       (2.21) 

where we have assumed the increment in time is small so that 1 2λ λ≈ . Upon rescaling, 

equation (2.21) becomes; 

                                          2
2

2

d
d

α
←                                                                           (2.22) 

where  , using equation (2.20) ; 

                                         
2 2

2
2

1

t

o

d e

d

λ

α
α

= =                                                                   (2.23) 

Hence, from equation (2.22), we have; 

                                     

                                            2 1 2

2

1
ln

t
λ α α=                                                                 (2.24) 

which is equation (2.9). Extending this process further, we conclude equation (2.10). 

2.4 STABILITY AND LYAPUNOV FUNCTIONS 

The stability of any hyperbolic equilibrium point 0z of; 

                               ( )z f z=�                                                                                       (2.25) 

 is determined by the signs of the real part of the eigenvalues  
j

λ  of the matrix 0( )Df z . 

A hyperbolic equilibrium point 0z is asymptotically stable if and only if  Re( ) 0
j

λ <  
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for 1, 2,....,j n= ; that is, if and only if 0z is a sink. Similarly a hyperbolic equilibrium 

point 0z is unstable if and only if it is either a source or a saddle. The stability of non-

hyperbolic equilibrium point is typically more difficult to determine. A method, due to 

Lyapunov, that is very useful for deciding the stability of non-hyperbolic equilibrium 

points is presented in this section (Wolf, et al., 1985). 

Definition 2.4.1   

 Let 
t

φ  denote the flow of the differential equation (2.25), defined for all t ∈� . An 

equilibrium point 0z of (2.25) is stable if for all 0ε >  there exists a 0δ >  such that for 

all ( )
o

z N zδ∈  and 0t ≥  we have; 

                     0( ) ( ( ))
t t

z N zεφ φ∈  

The equilibrium point 0z is unstable if it is not stable. Moreover, 0z is asymptotically 

stable if it is stable and if there exists a 0δ > such that for all 0( )z N zδ∈  we have; 

                     0lim ( )
t

t
z zφ

→∞
= . 

Remark; The following two Theorems and a corollary provide a useful result in the 

subsection that is to follow;  

Theorem 2.4.1 The stable Manifold Theorem (Perko, L.1991)  

Let E be an open subset of n
� containing the origin, let 1( )f C E∈ , and let 

t
φ be the 

flow of the non-linear system (2.25). Suppose that  (0) 0f =  and that (0)Df  has 

k eigenvalues with negative real part and n k− eigenvalues with positive real part. Then 

there exists a k -dimensional differentiable manifold S tangent to the stable subspace 
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sE of the linear system z Az=�  where 0( )A Df z= , at 0 such that for all 0t ≥ , 

( )
t

S Sφ ⊂  and for all 0z S∈ , 

                          0lim ( ) 0
t

t
zφ

→∞
= ; 

and there exists an n k− -dimensional differentiable manifold U tangent to the unstable 

subspace uE  of z Az=� at 0 such that for all 0t ≤ , ( )
t

U Uφ ⊂  and for all 0z U∈ , 

                      0lim ( ) 0
t

t
zφ

→−∞
= .  

Corollary 2.4.1: Under the hypothesis of the Stable Manifold Theorem, if S andU  are 

the stable and unstable manifolds of (2.25) at the origin and if 

Re( ) 0 Re( )
j m

λ α β λ< − < < < for 1, 2,....,j k=  and 1,......, ,m k n= + then given 0ε >  

there exists a 0δ >  such that if 0 (0)z N Sδ∈ ∩ then 0( ) t

t z e
αφ ε −≤ for all 0t ≥ and if 

0 (0)z N Uδ∈ ∩ then 0( ) t

t z e
βφ ε≤ for all 0t ≤ . 

Theorem 2.4.2 The Hartman-Grobman Theorem (Perko, L.1991)  

Let E be an open subset of n
� containing the origin, let 1f C E∈ and let 

t
φ be the flow 

of the non-linear system (2.25). Suppose that (0) 0f = and the matrix (0)A Df= has no 

eigenvalue with zero real part. Then there exists a homeomorphism H of an open set 

U containing the origin onto an open set V containing the origin such that for 

each 0z U∈ , there is an open interval 0I ⊂ � containing zero such that for all 

0z U∈ and 0t I∈ ; 
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0 0( ) ( )At

tH z e H zφ =�  

 i.e., H maps trajectories of (2.25) near the origin onto trajectories of  z Az=� near the 

origin and preserves the parameterization by time. 

A stable node or focus of a linear system in 2
� is an asymptotically stable equilibrium 

point; an unstable node or focus or a saddle of a linear system in 2
�  is an unstable 

equilibrium point; and a center of a linear system in 2
� is a stable equilibrium point 

which is not asymptotically stable. 

It follows from the Stable Manifold Theorem and the Hartman-Grabman Theorem that 

any sink of (2.25) is asymptotically stable and any source or saddle of (2.25) is unstable. 

Hence, any hyperbolic equilibrium point of (2.25) is either asymptotically stable or 

unstable. The corollary above provides even more information concerning the local 

behavior of solutions near a sink. 

Theorem 2.4.3. (Perko, L.1991) 

 If 0z is a sink of the non-linear system (2.25) and Re( ) 0
j

λ α< − < for all the 

eigenvalues 
j

λ of the matrix 0( )Df z , then given 0ε > there exists a 0δ > such that for 

all 0( )z N zδ∈ , the flow ( )
t

zφ of (2.25) satisfies 0( ) t

t z z e
αφ ε −− ≤ for all 0t ≥ .   

Since hyperbolic equilibrium points are either asymptotically stable or unstable, the 

only time that equilibrium point 0z of (2.25) can be stable but not asymptotically stable 

is when 0( )Df z has a zero eigenvalue or a pair of complex-conjugate, pure-imaginary 
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eigenvalues ibλ = ±  It follows from the next theorem, that all other eigenvalues 
j

λ of 

0( )Df z must satisfy Re( ) 0
j

λ ≤  if 0z  is stable. 

Theorem 2.4.4 (Perko, L.1991) 

If 0z is a stable equilibrium point of (2.25), no eigenvalue of ( )
o

Df z has a positive real 

part. 

Stable equilibrium points which are asymptotically stable can only occur at non-

hyperbolic equilibrium points. But the question as to whether a non-hyperbolic 

equilibrium point is stable, asymptotically stable or unstable is a delicate question. 

The following method due to Lyapunov, is very useful in answering the question. 

Definition 2.4.2:  If 1( )f C E∈ , 1( )V C E∈ and 
t

φ is the flow of the differential equation 

(2.25), then for z E∈ the derivative of the function ( )V z along the solution ( )
t

zφ ; 

                                 0( ) ( ( )) ( ) ( )
t t

d
V z V z DV z f z

dt
φ == =�  

The last equality follows from the chain rule. If ( )V z� is negative in E  then 

( )V z decreases along the solution 0( )
t

zφ through 0z E∈ at 0t = . Furthermore , in 2
� , if 

( ) 0V z ≤� with equality only at 0z = , then for small positive C the family of curves 

( )V z C=  constitute a family of closed curves enclosing the origin and the trajectories 

of (2.25) cross these curves from their exterior to their interior with increasing; i.e., the 

origin of (2.25) is asymptotically stable.  
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2.5 NORMAL HYPERBOLICITY AND GENERALIZED LYAPUNOV 

NUMBERS 

2.5.1 Normal Hyperbolicity 

Synchronization and stability of an invariant manifold M  relates to the attraction and 

persistence of this manifold. A necessary and sufficient condition for such 

synchronization and persistence is Normal Hyperbolicity. 

Let Z be a vector field on n
� with the flow tF . Let M  be a compact connected 

manifold with a boundary which is overflowing invariant under the vector field Z. Let 

the tangent bundle |nT� M  restricted to split into three sub-bundles; 

|n u sT N T N= ⊕ ⊕� M M , invariant under the linearized flow ( )tΦ  for all  t , where  

u
N  is the unstable bundle and s

N   is the stable normal bundle. When  u
N  is empty, the 

tangent space of M  decomposes as; 

|n sT T N= ⊕� M M  

Let : |n sT Nπ →� M  be the orthogonal projection. Define the linearization 0( ; )
c

t zΦ  

of the flow parallel to the manifold, and 0( ; )
s

t zΦ  normal to the manifold as; 

0 0( ; ) ( | ( ))
c t

t z D z−Φ = Φ M , 

0 0( ; ) ( ( ))
s t t

t z D zπ −Φ = Φ Φ  

for 0z ∈M  

A manifold is normally hyperbolic if, under the dynamics linearized about the invariant 

manifold, the growth rate vectors transverse to the manifold dominates the growth rates 
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of the vectors tangent to the manifold, that is, the contraction of the flows in the 

direction normal to the manifold is exponentially greater than the contraction of the 

flows tangent to the manifold. 

2.5.2 Generalized Lyapunov Exponents 

The generalized Lyapunov exponents are defined as; 

0 0

0

0

0

1
( ) limsup ln ( ; )

ln ( ; )
( ) limsup

ln ( ( ; ))

s
t

s

t
c

z t z
t

t z
z

m t z

α

β

→∞

→∞

= Φ

Φ
=

Φ

                                                                                  (2.26)  

where for a linear operator , ( ) min{| || | 1, ( )}L m L Lx x x D L= = ∈ . 

The rate of contraction (growth) of the vectors in the direction normal to the manifold 

M  is measured by 0( )zα  while 0( )zβ  measures the ratio of the exponential rate of 

contraction (growth) of vectors in normal direction, and the exponential rate of 

contraction (growth) of vectors in M . 

The growth rates of vectors can be characterized in terms of Generalized Lyapunov 

exponents determined from the linearised equations of motion around the 

synchronization manifold. This is because the asymptotic stability of the manifold M  

can be inferred from the assumption that the asymptotic stability of the origin in the 

linearization of the equations describing the dynamics transverse to the manifold 

implies the transverse stability of M  under the full equations. 

This splitting is called hyperbolic if  0( ) 1zα <  for all 0z ∈
1

M , that is, 

0( ; )
s

t zΦ contracts s
N  more sharply than 0( ; )

c
t zΦ contracts 1TM . 
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The magnitude of these growth rates determines the strength of Robustness, i.e., 

condition under which a stable manifold remains stable even after a small perturbation. 
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CHAPTER THREE 

3.0 COUPLED OSCILLATORS 

3.1 INTRODUCTION 

When different oscillators are mutually coupled, different types of synchronization 

phenomena may develop as the coupling strength is increased. This may be amplitude 

envelope synchronization, phase synchronization, and lag, identical or generalized 

synchronization 

Similarly, when identical oscillators are coupled, the diagonal which is also referred to 

as synchronization manifold is usually invariant.  The dynamical behaviour of 

oscillators described by the equation ( ) ( )    (  , )ż t f z t µ=  in relation to 

synchronization, stability and persistence was studied. We considered one dimensional 

simple Bravais Lattice with Neumann boundary conditions and then two dimensional 

lattices. 

3.2 DYNAMICS OF 2n >  ALL-TO-ALL COUPLED OSCILLATORS 

Systems made of more than two coupled oscillators making a network are useful in 

studying the dynamics of physical, chemical and biological systems. These can be more 

or less complicated networks of interconnected elementary units, or continuous 

extended systems that are modeled by means of ordinary differential equations. In this 

last case, the numerical treatment of these equations may result in a reformulation of the 

mathematical problem in terms of networks of coupled oscillators. Collective behaviors 

such as turbulence, spatial variations of observables, pattern formation and clustering 

are the kind of phenomena that are of interest in this context.  A desynchronized state is 
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a model of turbulence in space and time, while synchronized state describes spatially 

ordered and turbulent systems. Intermediate states in which only groups of oscillators 

synchronize correspond to phenomena of pattern formation and clustering. 

3.3 THEORY OF COUPLED OSCILLATORS 

Consider the individual flow, ( )z F z=� , the system used is described by; 

                  
1

( ) ( )
n

i
i ij j i

j

dz
F z C c z z

dt =

= + −∑         1, 2,......,i n=                                        (3.1) 

with C  a scalar constant this gives an overall measure of the strength of interaction 

between the n oscillators, 
ij

c a matrix which describes the configuration of the 

interactions which is also known as the coupling matrix. This is frequently chosen, such 

that the following symmetry rule; 

                  
1 1

( ) 0
n n

ij j i

i j

c z z
= =

− =∑∑                                                                                   (3.2) 

was verified (Fujsaka, et al., 1983). There are many choices of 
ij

c that describe the 

configuration of the interactions.  The two configurations frequently found are; 

(i) 1
ij

c =  for all ,i j n∈ , which describes an identical all-to-all interaction, 

(ii) 1
ij

c =  if 1i j− =  and 0
ij

c = , otherwise, this describes a linear chain with 

interactions only to the nearest neighbors, i.e., diffusive coupling. 

Approximations for the actions on the th
i oscillator that deviate from

1

. ( )
n

ij j i

j

C c z z
=

−∑ , 

can be used; one example is the mean field approximation, in which an all-to-all 

interaction can be averaged in the form; 
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1 1

. ( )
n n

ij j i j

j j

C
C c z z z

n= =

− ≈∑ ∑                                                                   (3.3) 

In all the above cases, it is assumed that the system of oscillators is isolated. In some 

applications, such as the study of continuous systems, or of specific experimental 

configurations found in practice, boundary conditions appropriate to the case studied 

can be used. A case frequently found is the use of periodic boundary conditions in 

which the finite system of n oscillators is assumed to be surrounded by a set of identical 

copies in a number and spatial arrangement given by the structure of the coupling 

matrix.  For example, a linear chain of n-oscillators with only nearest neighbor 

interactions, where the coupling term is given by 1 1

1

. ( ) .( 2 )
n

ij j i i i i

j

C c z z C z z z− +
=

− = + −∑ , 

the periodic boundary conditions are written as; 1 1( ) ( )
n

z t z t+ = . This particular system is 

equivalent to a closed ring of oscillators, a geometrical configuration frequently found 

in experiments. The system of equations (3.1) allows the 

solution 1 2 3( ) ( ) ( ) ................ ( ) ( )
n

z t z t z t z t z t= = = = = . When ( )z t is a solution to the 

differential equation ( )z F z=� , a state like this represents a very coherent form of 

motion in which all the oscillators are synchronized in the sense that there is identical 

synchronization between any pair of oscillators in the system. 

3.4 SYNCHRONIZATION OF ALL-TO-ALL COUPLED OSCILLATORS 

Coupled oscillators dynamical behavior can be described by the equation; 

( ) ( ( ), ( )) ( ( )z t kB z t z t f z tτ= − +�                                                                                   (3.4) 
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where 1 2( ) ( ( ), ( ),............. ( ))
n

z t z t z t z t= ,  ( ( ), ( ))kB z t z t τ−  is a linear operator describing 

the coupling of different configurations, 1 2( ( )) ( ( )), ( ( )),............. ( ( ))
n

f z t g z t g z t g z t= and 

0τ > is a time lag. From the literature review, the types of ( ( ), ( ))kB z t z t τ− considered 

are not as compressive as possible. They have only considered ( ( ), ( ))kB z t z t τ− for the 

following cases; 

(i) For two oscillators with 0τ >  and only one variable involved in the 

coupling,  

(ii) For a large and finite number of oscillators with 0τ = and the variables 

involved in the coupling  

Dynamical behavior of oscillators with ( ( ), ( ))kB z t z t τ−  involving delay in all variables 

and for a large but finite number of oscillators was addressed. 

Consider the ordinary differential equation; 

( )
j j

z g z=�                                                                                                                     (3.5) 

where ( )
j j

z z t= 2∈� , g is an odd continuous function on 2
� . The solution of equation 

(3.5) is a limit cycle that attracts the whole of 2
� except at the origin (0,0). 

The equation (3.5)  when coupled takes the form, 

1,

( ) ( 1) ( ) ( ) ( ( ))
n

j j i j

i i j

z t kI n z t z t g z tτ
= ≠

 
= − − + − + 

 
∑�                                                      (3.6) 

This system describes oscillators coupled all-to-all by linear diffusive terms. 
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3.5 EFFECTS OF TIME LAG ON STABILITY 

This sub-topic aimed at estimating the range of time lag for which the synchronized 

state is stable. We considered equation (3.6) and an orthogonal change of coordinates. 

Assuming that equation (3.6) has a compact global attractor kA    for each k. Eq. (3.6) is 

synchronized if the global attractor  kA    belongs to the diagonal in nR , where in this 

case the diagonal D is the set; 

{ }1 2 3 n|z =z =z =........=z , , 1, 2,.......,n

i
D z z R i n= ∈ = .  

This implies that the differences ( ) ( ) 0
j i

z t z t− → as t → ∞ for all ,i j . Of course, for the 

system to be synchronized the diagonal has to be an invariant set, which is the case if 

we consider identical subsystems. In addition, the linear operator; 

1,

( ( ), ( )) ( 1) ( ) ( )
n

j i

i i j

kB z t z t k n z t z tτ τ
= ≠

 
− = − − + − 

 
∑ , must have a zero as an eigenvalue 

with the diagonal being the corresponding generalized eigenspace and all other 

eigenvalues have to lie to the left of the complex plane. We wish to make the following 

assumptions on ( ( ), ( ))kB z t z t τ− ; 

Assumption 1 (H1.)  

For each k, zero is an eigenvalue of ( ( ), ( ))kB z t z t τ−  with the diagonal being a 

generalized eigenvector for zero. All other eigenvalues of ( ( ), ( ))kB z t z t τ− , lie to the 

left of the complex plane, for all 0 τ< < ∞ . Equation (3.4) has to satisfy assumption H1. 

The eigenvalues of ( ( ), ( ))kB z t z t τ− are given by the zeroes of 1( ) ( ( )) ( )n

c s
p p pλ λ λ−= , 

where 
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( ) ( 1)
c

p k n ke
λτλ λ −= + − +                                                                                           (3.7) 

and 

 ( ) ( 1)(1 )
s

p k n e
λτλ λ −= + − −                                                                                       (3.8) 

Clearly 0λ = is an eigenvalue of ( ) 0
s

p λ = and the vector (1,1,1,......,1)col  with 

2n× ones is the corresponding eigenvector. As long as 0k > and 2n ≥  , ( )
s

p λ  and 

( )
c

p λ have all their eigenvalues on the left half of the complex plane, regardless of the 

value ofτ , 0 τ< < ∞ . 

Assumption 2 (H2.)  

Let ( ) :
k t

T X X→ , 0t ≥ , 0k >  be a  C
0 

semi group generated by the solution of the 

equation (3.4) with initial condition Xϕ ∈  = C (( ,0), )nτ− � . X  is a Banach  space, 

( )k t
T is dissipative and has a compact global attractor 

k
A  :which is invariant under ( )k t

T .  

Furthermore,  ( ( )k t
T ,

k
A ) →0 as t → ∞ and 0k > , for all 0 τ< < ∞ . 

From assumption H1, a new coordinate system is introduced. Let 
j

e be the usual unit 

vector in nR , and 1

1
( )

2
j j j

e e e += −	 ,1 1j n≤ ≤ − , The set 
j

e , 
j

e	  is an orthogonal basis 

for nR . If we let 1 2 3 1( , , ,.............., )
n

e e e e e −=	 	 	 	 	  then in this basis, we can write z as; 

z e w ey= +	 , 2 2

1 2 1( , ,......, ) n

n
w w w w R

−
−= ∈ , 2y R∈ , w M∈ , y M∈ , where M is an 

inertial manifold with; 
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1j j j
w z z += − , 1 1j n≤ ≤ − , 

1

1 n

j

j

y z
n =

= ∑ . Now, with this transformation, equation (3.6) 

becomes; 

1

1
( ) ( 1) [ ( ) ( )] ( ( ))

1
( ) [( 1) ( ) ( )] [ ( , )]

2

n

j

j

y t n kI y t y t g z t
n

w t kI n w t w t G w y

τ

τ

=


= − − − + 


= − − + − + 

∑�

�

                                                          (3.9) 

where;  1( , ) ( ( )) ( ( ))j jG w y g z t g z t+= − ,1 1j n≤ ≤ − . 

For the synchronized state to be stable, all motion transverse to it must asymptotically 

dampen out. This is equivalent to saying that the zero solution of the second equation in 

Eq. (3.9) must be exponentially stable. Since the concern is the local dynamics, Eq. 

(3.9) can be linearized about ( ( ), ( )) ( )oy t w t y t=  with ( )oy t  solving the first equation of 

system (3.9) to get; 

 
( ) ( 1) [ ( ) ( )] ( ( )) ( )

( ) [( 1) ( ) ( )] ( ( )) ( )

z o

z o

y t n kI y t y t D g y t y t

w t kI n w t w t D g y t w t

τ

τ

= − − − + 


= − − + − + 

�

�
                                                (3.10) 

The estimated value of oτ τ= such that for all 0 oτ τ< < , for the synchronization and the 

stability for system (3.4) can be inferred from ( ) ( ( ), ( )) ( ( ))z t kB z t z t f z t= +� , that is the 

system (3.4) withoutτ . 

Proposition 3.5.1 

“There is a oτ such for any given 2n ≥ , and k , equation (3.4) has a stable synchronized 

solution for all 0 oτ τ< < ”. 
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Proof 

The second equation in (3.10) can be written as  

( ) ( ) ( ) ( ) ( )w t A t w t B t w t τ= + −�  

where 

( ) ( ( )) ( 1)z oA t D g y t k n I= − − , ( )B t kI= − .The system obtained for oτ =  is;  

( ) ( ( ) ) ( )w t A t kI w t= −�                                                                                                 (3.11) 

Suppose that the trivial solution of equation (3.11) is uniformly asymptotically stable, 

which is the case for 0m kIλ − < , mλ  being the maximum Lyapunov exponent for the 

matrix ( )A t  (Chow et al.,1997). 

If ( , )W t s  is the fundamental matrix solution of equation (3.11), with (0)W I= , then; 

( )( , ) t s
W t s ke

α− −≤ , 0α >  

Any solution ( )w t of the equation; 

( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )[ ( ) ( )]w t A t w t B t w t A t B t w t B t w t w tτ τ= + − = − + − −�  is given by; 

0

( ) ( ,0) ( ) ( , ) [ ( ) ( )]

t

ow t W t w t W t s B w s w s dsτ= + − −∫                                                    (3.12) 

For t τ> equation (3.12) can be written as; 

0

( ) ( ,0) ( ) ( , ) [ ( ) ( )] ( , ) [ ( ) ( )]

t

ow t W t w t W t s B w s w s ds W t s B w s w s ds

τ

τ

τ τ= + − − + − −∫ ∫  

For 0 s τ≤ ≤ we have that: 

0

( ) (0) [ ( ) ( ) ( )]w s w A s w s Bw s ds

τ

τ= + + −∫   such that if norms are taken on both side; 
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0

( ) (0) [ ( ) ( ) ( ) ]w s w A s w s Bw s ds

τ

τ≤ + + −∫  

Now, taking sup norm; 

0

( ) (0) [ ( ) ( ) ( ) ]w s w A s w s B w s ds

τ

τ≤ + + −∫  

or 

1 2

0

( ) (0) ( ) ( )w s w L L w s ds

τ

≤ + +∫ , taking ( ) ( )sup
s

w s w s
τ τ− ≤ ≤

=  

On the basis of Gronwall’s lemma, for 0 s τ≤ ≤ ; 

1 2( ) exp[( ) ] ,w s L L τ ϕ≤ +  

where  ϕ is the initial function of the solution w  given in [ ,0]τ− , that is, ϕ ∈C 

2[ ,0, ]Rτ− . We have set; 

1 ( )supL A t

t

=  , 2
sup

t

L B= . 

This estimate is also valid for 0s ≤ . It follows that for 0 s τ≤ ≤ , we have in any case; 

1 2( ) ( ) 2exp( )w s t w s L L τ ϕ− − ≤ + , 

For s τ≥ , it can be written as; 

( ) ( ) ( ) [ ( ) ( ) ( )]

s s

s s

w s w s w d A w Bw d

τ τ

τ σ σ σ σ σ τ σ
− −

− − = = + −∫ ∫� , hence; 

1 2

2

( ) ( ) ( ) ( )sup
s s

w s w s L L w
τ σ

τ τ σ
− ≤ ≤

− − ≤ + , thus we obtain; 

( ) ( )

2 1 2 2 1 2

20

( ) 2exp[( ) ] ( ) sup
t

t t s t s

s s

w t ke ke L L L ds ke L L L

τ
α α α

τ στ

ϕ τ ϕ τ− − − − −

− ≤ ≤

≤ + + + + =∫ ∫  
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2 ( )

2 1 2 2 1 2

2

1
[2 2exp[( ) ] ( 1) ( ) ( )sup

t

t t t t s

s s

ke kL L L e e k L L L e w ds
α α α α

τ στ

ϕ τ ϕ τ σ
α

− − − − −

− ≤ ≤

+ + − + + ∫
Setting; 

2

2 1 2

2
[1 ( 1)] exp( )t

oL k e L L L
αϕ τ

α
= + − + , and 2 1 2( )m k L L Lτ= + , then the above 

equation reduces to; 

2

( ) ( )sup
t

t t s

o

s s

w t L e me e w ds
α α α

τ στ

σ− −

− ≤ ≤

≤ + ∫                                                                 (3.13) 

Let, ( ) [ ( ) ]sup
t

t s

o

s s

v t e L m e w ds
α α

τ στ

σ−

− ≤ ≤

= + ∫ , then; 

2

( ) [ ( ) ] ( )sup sup
t

t s t t

o

s s s s

v t e L m e w ds e me w
α α α α

τ σ τ στ

α σ σ− −

− ≤ ≤ − ≤ ≤

= − + +∫�                             (3.14) 

However ( ) ( )w t v t≤ , hence sup ( ) ( )w vσ σ≤ . Thus ( ) ( ) ( )sup
s s

v t v t m v
τ σ

α σ
− ≤ ≤

≤ − +�  

The following Lemma is useful in establishing the bound for τ  for stability of the 

synchronized manifold; 

Lemma 3.5.1 

If ( ) ( ) ( )sup
t t

f t f t F
τ σ

α β σ
− ≤ ≤

≤ − +� for ot t≥  and 0α β> > , then there exist 0γ >  and 

0κ > such that ( )( ) ot t
f t e

γκ − −≤  for all ot t≥ . 

Proof; 

If m α< , it follows that by virtue of lemma (3.5.1) that there exists constants N  and 

γ such that; 

( )( ) ot t
v t Ne

γ− −≤  
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Hence a similar inequality holds for ( )w t . Consequently, the trivial solution of system 

(3.6) is exponentially stable provided that m α< , this leads to;  

2 1 2( )kL L L

α
τ <

+
 

Taking; 

2 1 2( )
o

kL L L

α
τ <

+
, completes the proof of the theorem. 

3.6 ONE DIMENSIONAL LATTICE OSCILLATOR 

In this case the oscillators are coupled in a line by diffusive like path where oscillators 

are allowed to interact with their immediate neighbor. The function ( ( ))kB z t  in Eq. 

(1.38) will be a linear function of the form;  

1( ( )) ( ) ( ) ( ),
d

kB z t A k z t k I z t= = ∆ ⊗  

where 1 2 3( ....... )
n

k k k k k= = = = =   and 
d

I is the identity matrix of order d and ⊗ is the 

Kronecker product. The choice of the constant coupling parameter is made in such a 

way that oscillators influence each other equally so that Eq. (1.38) can be written thus; 

1( ) ( )
d

z k I z f z= ∆ ⊗ +�                                                                                               (3.15) 

where 1 2( , ,..............., )T

n
z z z z= , with T denoting the transpose. 

There is need to show that the matrix 1∆  has 0 0λ =  as an eigenvalue with the 

corresponding generalized eigenvectors whose span is the diagonal in nd
�  and the other 

eigenvalues , 1,2,3,................, 1.
s

s nλ = −  are bounded to the left hand side of the 

complex plane.  
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Consequently, the following assumptions about  1∆ , are made; 

Assumption 3 (H3) 

For each  k , 1∆  is self adjoint,  0 0λ =  is an eigenvalue of  1∆  with the corresponding 

generalized eigenvector (1,1,1,.........,1) nde = ∈� . Its span is the diagonal in nd
�  

Assumption 4 (H4) 

For  2n > , there exist 0k a and bounded set nd
U ∈� such that for each k  , Eq. (3.15) 

has a global attractor U∈
1

M . 

We need to show that Eq. (3.15) satisfies the above two assumptions. 

The eigenvalues of  1∆  are 0 0λ =  and ( 2 2cos ) ,
2

s

s
k

n

π
λ = − −  1,2,.............., 1s n= −  

which satisfies the first assumption. 

For the stability of an invariant synchronized manifold, there is need to make a 

coordinate transformation that takes care of the transversal flow and the tangential flow 

to the manifold. Consider the transformation; 

,z ye ew= + 	    1 2 3 1( , , ,......., )
n

w w w w w −= ,  nd d
w

−∈� , dy ∈�  

                      1,j j j
w z z += −   1 1,j n≤ ≤ −  

                        
1

1
,

n

j

j

w z
n =

= ∑                                                                                        (3.16) 
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where 
j

e  is the thj  column of an  n n×  identity matrix and 
1

n

j i

j

j
e e e

n=

= −∑	  with 

1 2 3 1( , , ,..........., )
n

e e e e e −=	 	 	 	 	 . The set  , ,1 1
j

e e j n≤ ≤ −	  is an orthogonal basis for n
� ; that 

is, . 0
j

e e =	  

Using transformation (3.16) in Eq. (3.15), we obtain; 

( ) ( , ),
d

w k I w F w y= ∆ ⊗ +�  

1

1
( )

n

j

j

y g z
n =

= ∑� ,                                                                                                          (3.17) 

where the function 1 2 3 1( , ) ( ( , ), ( , ), ( , ),................., ( , ))T

n
F w y F w y F w y F w y F w y−=  with 

1( , ) ( ( ) ( )),
j j j

F w y g z g z += −  1 1j n≤ ≤ −  and the matrix ∆  is given by; 

( 1) ( 1)

2 1 0 0 . . . 0 0

1 2 1 0 . . . 0 0

0 1 2 1 . . . 0 0

. . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . 2 1 0

0 0 0 0 . . 1 2 1

0 0 0 0 . . 0 1 2

n n− × −

− 
 

− 
 −
 
 
 ∆ = ∈
 
 
 −
 

− 
 − 

�  

The eigenvalues of the matrix ∆  are 2 2cos
s

s

n

π
λ = − −  (Wasike, A. M. 2003). 

The first equation in (3.17) describes the motion transverse to the synchronization 

manifold  
1

M ; that is, it describes the deviations 1j j
z z +− . Synchronization means that 

the deviations dampen out as time evolves ( )t → ∞ . This is equivalent as saying that the 
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first equation in Eq. (3.17) is exponentially stable where stability refers to the attracting 

property of { 0}w = . 

We are interested in local synchronization and thus local attractivity of the 

synchronization manifold. Synchronization and stability relates to the attractivity of the 

manifold, we thus say that a manifold is stable if it is locally attracting. This attraction 

property is achieved if the Lyapunov exponents of Eq. (3.17) linearized about the 

synchronization manifold 
1

M , are less than zero (Wasike, A. M. 2003).  

Let 0z ∈
1

M and let 0( ; )t zΦ , be the fundamental matrix solution of; 

0( ( , ))z A z t z z=� , 

where  0( ( , ))A z t z  is the linearized vector field of Eq. (3.15) about 
1

M  which has an 

invariant splitting with respect to 0( ; )t zΦ  such that; 

0 0 0( ; ) ( ; ) ( ; );
c s

t z t z t zΦ = Φ ⊕ Φ  

where 0( ; )
c

t zΦ  and 0( ; )
s

t zΦ are the restrictions of  0( ; )t zΦ  on 
0 1z

T M  and 
0z

N  

respectively, with 
0 1z

T M  being  the bundle of vectors tangent to the manifold at 0z and 

is the bundle of vectors normal to the manifold at 0z . The criterion of stability and 

persistence is determined by looking at the growth rates of vectors transverse to the 

manifold and those tangential to the manifold. These growth rates are characterized by 

generalized Lyapunov exponents defined by Eq. (2.26). The following theorem relates 

to the stability and Lyapunov exponents; 
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Theorem 3.6.1 

If system (3.17) satisfies H3 and H4, then there exist a 0k such that for all 0k k>  , there 

is a positively invariant synchronized manifold 1M  that  is attracting and 1
C stable or 

persistent. 

To prove theorem (3.6.1), we shall need some results due to Chow and Liu. These 

results are obtained in the following Lemmas: 

Lemma  3.6.2. (Chow, et al., 1997). 

Consider the system (3.15), suppose that the synchronized manifold 
1

M  is invariant, 

then if 0( ) 0zα < , for all 0z ∈
1

M , then the manifold 
1

M  is attracting and hence system 

(3.15) is synchronized. 

Lemma 3.6.3. (Chow, et al., 1997). 

Suppose that 
1

M  is locally synchronized, then the synchronization is 1
C  stable if and 

only if 0( ) 0zα <  and 0( ) 1zβ <  for  all 0 1z ∈M . 

Proof 

Linearization of Eq. (3.17) along the solution 0(0, ( ))y t  which corresponds to 

1
( ( ), ( ))w t y t ∈M  yields; 

1 0

0

( ( )) 0

0 ( ( )

n z d

z

I D g y t k Iw w

D g y ty y

− + ∆ ⊗    
=     

    

�

�
                                                  (3.18) 

where  0 0[ ( ( )] ( ( ))
z

D g y t Jf y t=  is the Jacobian matrix of  f  at  0 ( )y t , the solution of Eq. 

(1.38). 
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We realize that there is an invariant splitting of ndT� into 1T N⊕M  (here ⊕  refers to 

the direct sum of subspaces). System (3.18) is uncoupled, and thus we can solve each 

equation individually. Now, { 0}w =  is locally attracting if the maximum Lyapunov 

exponents of  

1 0[ ( ( )) ]
n z d

w I D g y t k I w−= ⊗ + ∆ ⊗�                                                                            (3.19) 

is less than zero. 

Since 1 0( ( ))
n z

I D g y t− ⊗  and 
d

k I∆ ⊗  commute, the fundamental matrix solution of Eq. 

(3.18) is of the form; 

( )

0

( ) 0
( ; ),

( ) 0

s l

l

k t

t

w t e
t t

y t e

λ λ

λ

+  
= = Φ  

   
                                                                           (3.20) 

where , {1,2,.............., }
s

s nd dλ ∈ −  are the eigenvalues of the coupling configuration 

d
I∆ ⊗   and  

l
λ , 1 l d≤ ≤  is the Lyapunov exponents of the trajectory defined by 

0( ( ))
z

y D g y t y=� . 

In our case, the invariant manifold 0w =  is the one generated by the second equation in 

(3.18). Therefore  0( ; )
c

t tΦ  corresponds to lte
λ

 while 0( ; )
s

t tΦ  corresponds to 
( )s lk t

e
λ λ+

. 

The maximum eigenvalue of ∆  is 2

1 4sin
2n

π
λ = −  and from the definition of Lyapunov 

exponents, 

0 1( ) ( ),
M

z kα ξ λ= − +  where 1 1ξ λ= −  is the maximum eigenvalue of the coupling 

configuration and 
M

λ  is the maximum Lyapunov exponent of the trajectory defined by 

0( ( ))
z

D g y t  in 1M  
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Thus by Lemma 3.6.2, { 0}w =  is attracting and the coupled system is locally 

synchronized if 0( ) 0zα < ; that is, k  satisfies the expression; 

1

1
M

k λ
ξ

>  

To ensure robustness of the synchronized manifold, the condition for normal 

hyperbolicity must be satisfied. 1M  is normally hyperbolic if and only if for all 

0 1z ∈M . 

0 00 0sup ( ; ) inf ( ( ; )).z s z ct t m t tΦ < Φ  

This is equivalent to saying that; 

0

0

0

ln ( ; )
( ) limsup 1.

ln ( ; )

s

t
c

t z
z

m t z
β

→∞

Φ
= <

Φ
 

By Lemma 3.6.3, we require that  0( ) 0zα <  and 0( ) 1zβ <  for persistence of the 

synchronized manifold 1M  

This is equivalent to; 

1 1M

m

kλ ξ

λ

−
<  

This is satisfied if  
1

1
( )

M m
k λ λ

ξ
> − . Thus we can conclude that, for synchronization, 

stability and robustness of the synchronization manifold 1M , k  must satisfy the 

inequality; 

0

1

1
max{ ( , )}

M M m
k λ λ λ

ξ
> −  
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Taking 0

1

1
max{ ( , )}

M M m
k λ λ λ

ξ
= −  completes our proof. 

3.7 TWO DIMENSION AL LATTICE OSCILLATOR 

In this section, we explore the existence and stability of synchronized manifold and its 

persistence after perturbation for the case of a two dimensional lattice oscillators. The 

synchronization manifold exists by making appropriate coordinate transformation which 

decomposes the flow linearized along the invariant manifold into transversal and 

tangential flows. The condition of normal hyperbolicity using the Lyapunov exponents 

is studied. 

Consider the coupling of n n×  oscillators on a simple square lattice. Let , ,1 ,
i j

z i j n≤ ≤  

be the coordinate of the ( , )thi j  site oscillators and let , , 1[ ]n nd nd

i j i jZ z
×

== ∈�  be the 

matrix formed when the oscillators are coupled on a square Lattice. Also, let 

1 2 3( , , ,.........., )
n

Z Z Z Z Z=  with nd

r
Z ∈�  , 1 r n≤ ≤  be its thr  column. We define the 

vector valued function of Z as; 

2

1

2

.

.

.

n d

n

Z

Z

vecZ

Z

 
 
 
 

= ∈ 
 
 
  
 

�  , 1 2( , ,........., )T

r r r nr
Z z z z=                                                          (3.21) 

Since on a square Lattice, oscillators interact with each other on each column, and at the 

same time interact with each other on each row, the system of differential equations 

describing the dynamics on the n n×  lattice is given by; 
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1 1[( ) ] ( )
d

Z k I Z Z G Z= ∆ ⊗ + ∆ +�                                                                                 (3.22) 

where, , , 1 1 2( ) [ ( )] ( ( ), ( ),........, ( ))n

i j i j nG Z g z f Z f Z f Z== = , 

with; 1, 2, ,( ) ( ( ), ( ),..........., ( ))T

r r r n rf Z g z g z g z= , where T denotes the transpose. 

The interpretation of Eq. (3.22) is important. The first term 1[( ) ]
d

k I Z∆ ⊗  in the 

coupling matrix, indicates the near neighbor coupling of elements within a column of Z, 

and the second term  1kZ∆ , corresponds to the nearest neighbor diffusive coupling of 

elements within a row of  Z 

Eq. (3.22) can be written in vector form as; 

1 1( ) { [( ) ] ( )
d

vec Z k vec I Z Z vecG Z= ∆ ⊗ + ∆ +�                                                            (3.23) 

Note that 1( ) nd nd

d
I

×∆ ⊗ ∈�  and 1

n n×∆ ∈� . Eq. (3.20) is therefore equivalent to; 

( ) ( ) ( ),vec Z B k vecZ vecG Z= +�                                                                                  (3.24) 

where 1 1( ) ( )
d

B k k I= ∆ ⊕ ∆ ⊗  and ⊕  is the Kronecker sum. 

For system (3.24) to be synchronized, the diagonal must be invariant set which will be 

the case if all the ,( )
i j

g z  are the same, that is, the dynamics of the subsystems are 

identical, and the matrix ( )B k  has zero as an eigenvalue with the diagonal being the 

corresponding eigenspace. In this situation, all the other eigenvalues of ( )B k  must be 

less than zero. We can make the following assumptions about ( )B k ; 
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Assumption 5. (H5) 

For each k , ( )B k  is self adjoint, 0 0λ =  is an eigenvalue of ( )B k  with the 

corresponding generalized eigenvector 
2

(1,1,.......,1) n d
e = ∈�  which spans the diagonal 

in 
2n d

� . 

Assumption 6. (H6) 

For 2n > , there exist a 0k  and bounded set 
2

n d
U ∈�  such that for each k , Eq. (3.24) 

has a global attractor 2 U∈M .  

It is trivial to show that Eq. (3.24) satisfies assumption H5.  Symmetric synchronization 

occurs when , , 0
p q r s

z z= ≠  for all , , ,p q r s ∈
 . This is only possible when;  

( ) 0,B k vecZ vecZλ= =        0Z ≠  

Thus we require that 0λ =  be an eigenvalue of ( )B k . The eigenvalue of ( )B k  are; 

( ( )) { : ( ) ,0 , 1}
p q

B k k p q nσ µ µ λ λ= = + ≤ ≤ − , 

with 0 0λ = , 2 2cos
2n

ζ

ζπ
λ = − − , ,p qζ = , 1 1nζ≤ ≤ − , each occurring d times and the 

corresponding eigenvectors is given by; 

( )
pq p q d

V V V I= ⊗ ⊗  

where 
p

V  and 
q

V  are eigenvectors corresponding to the eigenvalues 
p

λ  and 
q

λ  

respectively. Because of the existence of zero eigenvalue, there exist an invariant 

manifold spanned by diagonal, hence assumption H5  is satisfied. 

Synchronization is said to occur if the solutions of Eq. (3.24) belongs to the set; 
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2 1{ | , ,1 1}n n

j j jZ Z Z Z j n
×

+ ∞= ∈ = ∈ ≤ ≤ −�M M  

This set is referred to as synchronization manifold 

In order to understand the dynamics of the set 2M , we define a transformation that 

decomposes Eq. (3.24) into equations describing the transverse and tangential flows. 

The transformation used in the one dimensional case can be rewritten for the two 

dimensional case as; 

1,j j j
W Z Z += +  1 1j n≤ ≤ − , nd

jZ ∈�  

1

1
,

n

j

j

Y Z
n =

= ∑  ndY ∈�                                                                                                 (3.25) 

where , 1

, 1 1 2 3 1[ ] ( , , ,........., )n n

ij i j nW w W W W W
−
= −= =  with nd

r
W ∈�  , 1 1r n≤ ≤ −  as its thr  

column, is the matrix formed by finding the differences between the interacting 

oscillators coupled on a square lattice and 1 2( , ,......, )T

n
Y y y y= , with 

1

n

i ij

j

y z
=

=∑  

The first equation in (3.25) describes the differences between the interacting oscillators, 

thus defines the deviations from the invariant manifold. 

Let 
j

e  be the usual unit vector in n
� . The set , ,

j
e e	  1 1j n≤ ≤ −  is an orthogonal basis 

for n
� , and in this basis we can write Z as; 

( ) ,
n

vecZ e Y e I vecW= ⊗ + ⊗	    
2

n d nd
W

−∈�                                                              (3.26) 

Using equations (3.25) and (3.26) in equation (3.24) we get; 

 1[( ) ] ( , )
d

vecW k I vecW vecF W Y= ∆ ⊕ ∆ ⊗ +� 	  
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1

1

1
( ),

n

d j

j

Y k I Y f Z
n =

= ∆ ⊗ + ∑�                                                                                      (3.27)                                          

where 1 2 1( , ) ( ( , ), ( , ),......................., ( , ))
n

F W Y F W Y F W Y F W Y−=	 	 	 	 with 

1( , ) ( ) ( )j j jF W Y f Z f Z += −	  

The first equation in (3.27) describes the transverse motion to the synchronization 

manifold 2M  and the second equation describes the motion tangent to the manifold 

2M . 

Symmetric synchronization is equivalent to , , 0
p q r s

z z− →  as t → ∞  for all 

, , ,p q r s +∈
 . This means that the deviations 
ij

w  dampen out as 0t → , and we have 

0W = . Thus synchronization implies that the zero solution of the first equation in 

(3.27) is asymptotically stable and therefore the synchronization manifold is attracting. 

Since our interest is local synchronization of the invariant manifold, we shall seek to 

show that the manifold is locally attracting. Attractivity of the manifold is measured 

using Lyapunov exponents.  

The manifold 2M  is stable if the Lyapunov exponents of the flow defined by the first 

equation in Eq. (3.25) are less than zero. 

Consider the linearization of Eq. (3.24) along 2M  thus; 

1 1 0
ˆ[ ( ) ( ( , ))] ,

d
vecZ k I A Z t z vecZ= ∆ ⊕ ∆ ⊗ +�                                                               (3.28) 

where 0( , )Z t z  is the solution of Eq. (3.24) with 0 0 2(0, )Z z z= ∈M  and ˆ( )A Z  is the 

Jacobian matrix of G at Z. 
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Let 0
ˆ ( ; )t zΦ , be the fundamental matrix solution of Eq. (3.28) which has an invariant 

splitting with respect to 0
ˆ ( ; )t zΦ , such that; 

0 0 0
ˆ ˆ ˆ( ; ) ( ; ) ( ; );

c s
t z t z t zΦ = Φ ⊕ Φ  

Where the indices c denotes centre manifold and s denotes stable manifold, while 

0
ˆ ( ; )

c
t zΦ  and 0

ˆ ( ; )
s

t zΦ  are restrictions of 0
ˆ ( ; )t zΦ  on 

0 2z
T M  and 

0z
N  respectively, with 

0 2z
T M  being the bundle of vectors tangent to the manifold at 0z  and 

0z
N  is the bundle 

of vectors normal to the manifold at 0z . Stability and persistence is determined by the 

growth rates of vectors transverse to the manifold and those tangential to the manifold. 

These growth rates are characterized by generalized Lyapunov type numbers defined in 

Eq. (2.26) 

The following theorem relates stability and Lyapunov type numbers; 

Theorem 3.7.1 (Chow, et al., 1997). 

If system (3.22) satisfies assumptions H5 and H6, then there exist a 
o

k  such that for all 

o
k k>  , there is a positively invariant synchronized manifold 2M  that is attracting and 

1
c  stable or persistent. 

 Proof 

The proof of this theorem is done using the results due to Chow and Liu which are 

contained in Lemmas (3.6.2) and (3.6.3) which can be rephrased to refer to 2M . 

The same results as in one dimensional coupling holds; that is, the corresponding 

invariant manifold 2M  is locally attracting hence synchronized if 0( ) 0zα < . Also, if 
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2M  is locally synchronized, the synchronization is persistent if and only if 0( ) 0zα <   

and 0( ) 1zβ <  for all 0 2z ∈M . 

To characterize growth rates in terms of Lyapunov type numbers, we need to linearize 

system (3.27) along the solution 0( ( ), ( )) (0, ( ));W t Y t Y t=   

where 0 01 02 03 0( ) ( ( ), ( ), ( ),............., ( ))
n

Y t y t y t y t y t=  a solution to Eq. (3.22); gives; 

1 1 0

0

( ) ( ( )) 0

0 ( ( ))

d nk I I DG Y tvecW vecW

DG Y t YY

−
  ∆ ⊕ ∆ ⊗ + ⊗  

=         

�

�
                       (3.29) 

where 0 0( ( )) ( ( ))
n z

DG Y t I diagD g y t=  is the Jacobian matrix of  f  at 0 ( )Y t . 

Notice that there is an invariant splitting of 
2n d

T�  into 2 ,T N⊕M  where 

2

2

n d nd
T

−∈�M  and nd
N ∈� , where ⊕  refers to the direct sum of subspaces. 

From Lemma (3.6.2) 0W =  is locally synchronized if the Lyapunov exponents of the 

trajectory defined by the first equation in Eq. (3.29) is less than zero. 

Since Eq. (3.29) is uncoupled, and the matrices 1( )
d

k I∆ ⊕ ∆ ⊗  and 1 0( ( ))
n

I DG Y t− ⊗  

commute, the fundamental matrix solution of Eq. (3.29) is of the form; 

ˆ( )

0

( ) 0 ˆ ( ; )
( ) 0

i

j

k t

t

vecW t e
t t

Y t e

ζλ λ

λ

+  
 = = Φ      

 

where ˆk ζλ  , 21 n d ndζ≤ ≤ −  are the eigenvalues of 1( )k ∆ ⊕ ∆ , 
i

λ  and 
j

λ , 

21 i n d nd≤ ≤ −  , 1 j nd≤ ≤  are the Lyapunov exponents over 2M . The maximum 

eigenvalues ˆ
ζλ  of 1( )∆ ⊕ ∆  will be the maximum eigenvalue of 1 0∆ =  plus the 
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maximum eigenvalue of 1ξ∆ = ; that is, 2

2 14sin
2

s

n

π
ξ ξ− = − =  .  Let 

M
λ  and 

m
λ  be the 

maximal and minimal Lyapunov exponents over 2M . Then from the definition of 

Lyapunov type numbers in (2.26), we realize that the Lyapunov type number 0( )zα  

corresponding to 1 M
kξ λ− +  and it is less than zero if 1 M

kξ λ> , thus the 

synchronization manifold is locally attracting if; 

1

Mk
λ

ξ
> , 

According to Lemma (3.6.3), synchronization manifold 2M  is stable if 0( ) 0zα <  and 

0( ) 1zβ < . 

Since 0( )zβ  corresponds to 1 M

m

kξ λ

λ

− +
, it follows that;  

0( ) 1zβ <  if 
1

1
( )

M m
k λ λ

ξ
> − , thus the manifold is stable and robust if satisfies the 

inequality; 

1

1
max{ ( , )}

M M m
k λ λ λ

ξ
> −  

Taking 0

1

1
max{ ( , )}

M M m
k λ λ λ

ξ
> −  completes the proof.  
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CHAPTER FOUR 

4.0 INTRODUCTION 

Explicit Runge-Kutta method can be used to solve delay differential equations. The 

dde23 mat lab solver is closely related to ode23 solver (Shampine, A. et al., 1997), 

which implements the BS (2, 3) triple (Shampine, A. et al., 1989). A triple of s stages 

involves three formulas. Let  
n

g  be the approximation to ( )g z  at 
n

z  and an 

approximation at 1n n n
z z h+ = + is computed . For 1,2,....,i s=  the stages ( , )

ni ni ni
f f x y=  

were defined in terms of 
ni n i n

z z c h= +  and 
1

1

i

ni n n ij nj

j

z z h a f
−

=

= + ∑  where 
1

1

i

i ij nj

j

c a f
−

=

=∑ and 

n
h  is the step size. 

The approximation used to advance the integration is given by;  

 1

1

s

n n n i ni

i

g g h b f+
=

= + ∑                                                                                                   (4.1) 

The solution satisfies the following formula 1( ) ( ) ( , ( ))
n n n n n e

g z g z h z g z tφ+ = + +  with a 

truncation error   
e

t . For sufficiently smooth f and ( )g z  this error is 1( )p

n
h

+
○ . The triple 

includes another formula; 

 * * *

1

1

( , )
s

n n n i ni n n n n

i

g g h b f g h z gφ+
=

= + = +∑                                                                  (4.2) 

This second formula was used only for selecting the step size. The third formula has the 

form; 

1

( )
s

n n n i ni

i

g g h b fσ σ+
=

= + ∑                                                                                             (4.3) 
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The coefficients ( )
i

b σ  are polynomials in σ , so this represents a polynomial 

approximation to ( )
n n

g z hσ+  for 0 1σ≤ ≤ . We assumed that this formula yielded the 

value 
n

g  when  oσ =  and 1n
g +  when 1σ = . For this reason the third formula is 

described as a continuous extension of the first. A much more serious assumption is that 

the order of the continuous extension is the same as that of the first formula. These 

assumptions hold for the BS (2,3) triple. For such triples we regard the formula used to 

advance the integration as just the special case 1σ =  of the continuous extension we 

can write; 

( , , )
n n n n n

g g h z gσ φ σ+ = +                                                                                             (4.4) 

When using the explicit Runge-Kutta triple in solving the DDE given, a strategy for 

handling the history terms ( )
n j

g z τ−  that appear in 

1( , , ( ),......, ( ))
ni ni ni ni ni k

f f z g g z g zτ τ= − − is needed. Two situations must be 

distinguished; 
n j

h τ<  and 
n j

h τ>  for some j . Suppose that we have the approximation 

( )S z  to ( )g z for all 
n

z z≤ , if 
n

h τ≤ , then all the 
ni j n

z zτ− ≤  and 

1( , , ( ),......, ( ))
ni ni ni ni ni k

f f z g S z S zτ τ= − −  is an explicit recipe for the stage and the 

formulae are explicit. The function S (z) is the initial history for z a≤ . After taking the 

step to 1n
z + , we use the continuous extension to define S (z) on 1[ , ]

n n
z z + as 

( )
n n n

S z h g σσ ++ = . This suffices for proving convergence as the maximum step size 

tends to zero, but we must take up the other situation because in practice, we may very 

well want to use a step size larger than the smallest delay. 
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When 
n j

h τ< for some j, the “history” term S (z) is evaluated in the span of the current 

step and the formulas are defined implicitly. In this situation the formulas were 

evaluated with simple iteration. On reaching 
n

z , we will have defined S (z) for 
n

z z≤ . 

The definition is extended somehow to ( , )
n n n

z z h+  and the resulting function called 

(0) ( )S z . A typical stage of simple iteration begins with the approximate solution 

( ) ( )mS z . The next iterate is then computed with the explicit formula;     

( 1) ( )( ) ( , , ; ( ))m m

n n n n n n
S z h g h z g S zσ φ σ+ + = + .                                                             (4.5) 

4.1 NUMERICAL RESULT 

The numerical solution of system (1.44) for various values of τ  was computed by 

choosing ( ( ))
j

g z t  of the form: 

1

2

( , )
( ( ))

( , )

i i

j

i i

f x y
g z t

f x y

 
=  
 

 

where                      
3

1( , ) ( )
3

x
f x y y xα= − −           0α >                                                                              

                                2 ( , )f x y x= −                                                                                (4.6) 

The choice of 
i

f  is plausible because in most diffusive path-like problems, for instance 

Chemistry where coupling is effected by the flow of reactants from one reactor to the 

other, the flow of various reactants through the connecting medium of the coupled 

oscillators is the same. Thus a time delay is required for 
i

x to be transferred from 

oscillator i to oscillator j and vice versa.  
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We compare the solution of system (1.44) by plotting the trajectories of its solution for 

the various values of    τ  and that of 0
o

τ = . 

4.1.1 The One Dimensional Case       

We wish to illustrate the importance of the results with a specific example, we consider 

the coupled Van der pol oscillator for the choice of the parameter 1α = . Where we 

chose 4n = , and 2d = .   

We compute and compare numerical solution of system (1.44) by using Eq. (4.4); 

The arrangement of oscillators as described by Eq. (3.15)  with 4n = , is given by; 

1 1 1

2 2 2

3 3 3

4 4 4

( ) ( ) ( ( ))1 1 0 0

( ) ( ) ( ( ))1 2 1 0 1 0

( ) ( ) ( ( ))0 1 2 1 0 1

0 0 1 1( ) ( ) ( ( ))

z t z t g z t

z t z t g z t

z t z t g z t

z t z t g z t

−      
      

−        = ⊗ +       −  
           −      

�

�

�

�

                                      (4.7) 

The eigenvalues of the coupling matrix (4.7) are; 

( 2 2cos )
8

s

sπ
λ = − − ,      0,1,2,3s = . 

where 0 0,λ =  1 3.8476 ,kλ = −  2 34142 ,kλ = −  3 2.7654kλ = − . Thus, the existence of 

zero eigenvalues shows H3 that is satisfied. 

To investigate whether Eq. (4.7) satisfies H4, we will have to use transformation (3.14) 

with; 

z ye ew= + 	 , 1 2 3 4( , , , )T
w w w w w= , 6

w∈� , 2y ∈� , 

where in this case, 
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1

1

1

1

e

 
 
 =
 
 
 

 and 

3 2 1

1 2 11

1 2 14

1 2 3

e

 
 

− =
 − −
 

− − − 

	  

Using the transformation in Eq. (4.7), we get; 

1 1 1 2

2 2 2 3

3 3 3 4

( ) ( ) ( ( )) ( ( ))2 1 0
1 0

( ) 1 2 1 ( ) ( ( )) ( ( ))
0 1

0 1 2( ) ( ) ( ( )) ( ( ))

w t w t g z t g z t

w t k w t g z t g z t

w t w t g z t g z t

−−      
       

= − ⊗ + −       
       − −      

�

�

�

, 

      1 2 3 4

1
( ) { ( ( )) ( ( )) ( ( )) ( ( ))}

4
y t g z t g z t g z t g z t= + + +�  

which is equivalent to; 

2

1 2 3 4

( ) ( ) ( , )

1
( ) { ( ( )) ( ( )) ( ( )) ( ( ))}

4

w t k I w F w y

y t g z t g z t g z t g z t

= ∆ ⊗ +

= + + +

�

�
                                                      (4.8) 

With 1 2 2 3( , ) ( ( )) ( ( )), ( ( )) ( ( )),F w y g z t g z t g z t g z t= − −  and 3 4( ( )) ( ( ))g z t g z t− . 

 The first equation in Eq. (4.8) describes motion transverse to the manifold 

1 1 2 3 4{ : }z z z z z= = = =M  and the second equation describes the motion tangential to 

the manifold. 

The eigenvalues of the coupling matrix in (4.8) are; 

( 2 2cos )
4

kζ

ζπ
λ = − −          {1,2,3}ζ ∈ , 

each occurring two times, and all these are less than zero. Synchronization occurs when 

the deviations have dampen out; that is, { 0}w = . 
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To understand the dynamics on the manifold 1M , we will have to linearize Eq. (4.8) 

along the solution 0(0, ( ))y t  on the manifold 1M . This linearization yields; 

1 1

2 3 2

3 3

( ) ( )2 1 0
1 0

( ) 1 2 1 0 ( )
0 1

0 1 2( ) ( )

( ) ( )0

w t w t

w t k I w w t

w t w t

y t y tw

 −     
      

− ⊗ + ⊗      =       − 
     

    

�

� 	

�

� 	

 

This is equivalent to; 

2( ) 0

0

w k I w

y w y

ϕ∆ ⊗ +    
=    

    

�

� 	
                                                                                   (4.9) 

where 0( ( ))
z

w D g y t=	  and 3I wϕ = ⊗ 	 .  

System (4.9) is uncoupled, and thus each equation can be solved independently. Since 

2k I∆ ⊗  and ϕ  commute, the solution of the first equation in (4.9) is of the form; 

( )

0( ) ( , ) ik t

s
w t t t e ζλ λ+

= Φ � ,  1,2,3ζ = ,    and  1,2,3i =  

where k ζλ  is the eigenvalue of 2k I∆ ⊗  and 
i

λ  is the Lyapunov exponents over ϕ . 

The solution of the second equation similarly will be of the form; 

0( ) ( ; ) t

c
y t t t e

λ= Φ �  

Note that { 0}w =  is locally attracting and thus the invariant manifold 1M  is stable if 

the maximum of 
i

k ζλ λ+  is less than zero. But we know that the 2max 4 sin
8

kζ

π
λ = − , 

let 
M

λ  be the maximum Lyapunov exponent of the trajectory defined by y wy=� 	 . Using 

the 4
th

 and 5
th

 order Runge-Kutta method, with a step size of 0.01 and up to 5000 

iterations, we obtain; 
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1.6361
M

λ � , 

and using the same algorithm, we obtain; 

0.1993
m

λ � . 

If 0z  is a point on 1M , then from the definition of generalized Lyapunov exponents, we 

have; 

2

0( ) 4 sin
8

M
z k

π
α λ= − +  or 0.5858 1.6361− +  

Stability criterion is therefore satisfied if 0( ) 0zα < ; that is, 

1
(1.6361) 2.8,

0.5858
k > �  

For persistence, we require that; 

0 00 0sup ( ; ) inf ( ( ; )),z s z ct t m t tΦ < Φ  

This is the same as saying that; 

0

0

0

ln ( ; )
limsup 1 ( )

ln ( ( ; ))

s

t
c

t z
z

m t z
β

→∞

Φ
< =

Φ
 

If 0( ) 0zα <  and 0( ) 1zβ < , the manifold 1M  persists under small perturbations. This 

implies that; 

1
( )

0.5858
M m

k λ λ> − ,which is equivalent to; 
1

(1.6361 0.1993) 2.45
0.5858

k > − � . 

Thus we conclude that for synchronization, stability and robustness of the 

synchronization manifold 1M , k must satisfy the inequality; 
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1
max{ ( , )}

0.5858
M M m

k λ λ λ> − , 

max(2.8, 2.45)k >  

0 2.8k = . 

4.1.2    The Two Dimensional Case 

Consider coupling of 4 4×  oscillators on a simple square lattice. Let ; 

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

1 2 3 4

3,1 3,2 3,3 3,4

4,1 4,2 3,4 4,4

( , , , )

z z z z

z z z z
Z Z Z Z Z

z z z z

z z z z

 
 
 = =
 
  
 

 be the matrix formed when oscillators are 

coupled on a square Lattice. Since a square lattice oscillators interact amongst 

themselves on each column and at the same time interact amongst themselves on each 

row, the system of differential equations describing the dynamics on the 4 4×  lattice is 

given by; 

1 1 0 0 1 1 0 0

1 2 1 0 1 0 1 2 1 0
( )

0 1 2 1 0 1 0 1 2 1

0 0 1 1 0 0 1 1

Z k Z Z G Z

 − −    
    

− −     = ⊗ + +     − − 
    

− −     

�                  (4.10) 

where; 

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

1 2 3 4

3,1 3,2 3,3 3,4

4,1 4,2 3,4 4,4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ( ), ( ), ( ), ( )).

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

g z g z g z g z

g z g z g z g z
G Z f Z f Z f z f Z

g z g z g z g z

g z g z g z g z

 
 
 = =
 
  
 
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Let 

1

2

3

4

Z

Z
vecZ

Z

Z

 
 
 =
 
  
 

 with 
r

Z  as its thr  column, thus Eq. (4.8) can be written in vector 

notation as; 

1 1 2( ) ( )vecZ k I vecZ vecG Z= ∆ ⊕ ∆ ⊗ +�                                                                      (4.11) 

The eigenvalues of matrix 1 1 2( )k I∆ ⊕ ∆ ⊗  are ( )
p q

k λ λ+  , , 0,1, 2,3p q =  each 

appearing two times, where; 

( 2 2cos )
8

q

q
k

π
λ = − − , 0,1,2,3q =  and ( 2 2cos )

8
p

p
k

π
λ = − − , 0,1,2,3p = , where 

0 0λ = , 1 3.8476kλ = − , 2 3.4142kλ = − , 3 2.7654kλ = −  

Clearly, there exist a zero eigenvalue and thus H5 is satisfied. 

To investigate if H6 holds, we use the transformation (3.23) and (3.24) with; 

( ) ,
n

vecZ e Y e I vecW= ⊗ + ⊗	    24
W ∈�  

to split Eq. (4.11) into tangential and transversal components to 2M , where in this case; 

1

1

1

1

e

 
 
 =
 
 
 

        and         

3 2 1

1 2 11

1 2 14

1 2 3

e

 
 

− =
 − −
 

− − − 

	  

Using this transformation, Eq. (4.11) satisfies Eq. (3.27). This can be written in compact 

form as; 

1 2 3

1 2

ˆˆ( ) 0 ( , )

ˆ0 ( )

k I w IvecW vecW vecF W Y

k I w YY F Y

   ∆ ⊕ ∆ ⊗ + ⊗  
= +         ∆ ⊗ +      

�

� 	
         (4.12) 
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where for this specific example; 

1

1 1 0 0

1 2 1 0

0 1 2 1

0 0 1 1

− 
 

− ∆ =
 −
 

− 

,     

2 1 0

1 2 1

0 1 2

− − 
 

∆ = − 
 − 

  ,  

1 2

2 3

3 4

( ( )) ( ( ))

ˆ ( , ) ( ( )) ( ( ))

( ( )) ( ( ))

f Z t f Z t

vecF W Y f Z t f Z t

f Z t f Z t

− 
 

= − 
 − 

   

and 

1

2

3

4

ˆ 0 0 0

ˆ0 0 0
ˆ

ˆ0 0 0

ˆ0 0 0

w

w
w

w

w

 
 
 =
 
 
 

 

with 0,
ˆ ( ( ))

j z j
w D g y t=  , 1 4j≤ ≤  while; 

1 2 3 4

1
( ) { ( ( )) ( ( )) ( ( )) ( ( ))}

4
F Y f Z t f Z t f Z t f Z t= + + +	  

Linearization of Eq. (4.12) about 0 2( ( ), ( )) (0, ( ))W t Y t Y t= ∈M  yields; 

1 2 3

1 2

ˆ( ) 0

ˆ0

k I w IvecW vecW

k I w YY

  ∆ ⊕ ∆ ⊗ + ⊗  
=      ∆ ⊗ +    

�

�
 

which on  2M  Eq. (4.12) reduces to; 

1 2 3
ˆ( ) 0

ˆ0

vecW k I w I vecW

w YY

  ∆ ⊕ ∆ ⊗ + ⊗  
=         

�

�
                                                    (4.13) 

Since Eq. (4.13) is decoupled, the solution is of the form; 

( )

0

0
( , )

0

i

j

k t

t

evecW
t t

Y e

ζλ λ

λ

+  
= = Φ     

   

�

�
                                                                         (4.14) 

where; 21 i n d nd≤ ≤ − , 1 j nd≤ ≤  

The synchronization manifold 
2

M  is attracting if; 
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max( ) 0
i

k ζλ λ+ <  

This is satisfied if; 

1
M

k λ
ξ

> , 

where 
M

λ  being the largest Lyapunov exponent of the trajectory defined by ˆY wY=�  

and 24sin
8

π
ξ = − . We know that 0.5858ξ = − . Computation using 4

th
 and 5

th
 order 

Runge-Kutta method with step size of 0.01 up to 5000 iterations, we obtain the 

maximum and minimum Lyapunov exponents as 1.6361
M

λ =  and 0.1993
m

λ =  

respectively. The condition that guarantees synchronization is thus given as; 

1
(1.6361)

0.5858
k > ,     or  2.8k > . 

For persistence, we require that; 

1M

m

kλ ξ

λ

−
<  ; that is, 

1
( )

M m
k λ λ

ξ
> −  

where 
m

λ  is the minimum Lyapunov exponent of the Jacobian matrix ŵ . Thus stability 

and persistence is satisfied if; 

1
max { , ( )}

M M m
k λ λ λ

ξ
> − , that is, 

1
max {1.6361, (1.6361 0.1993)}

0.5858
k > −  or 

max(2.8, 2.45)k > ,which implies that; 0 2.8k = . 
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4.2 DISCUSSION OF RESULTS 

The following figures (1.2) to (1.6) depict the effect of varying the values of the 

coupling strength and perturbation on stability and persistence of the synchronized 

manifold.  

Firstly we considered the weakly coupled Van der pol system which satisfies 

assumptions H1 and not H2 that is, the coupling strength k is zero;  

             

3

1 1 1 1 2 1

1

1 1 2 1

3

2 2 2 2 1 2

2

2 1 1 2

1
( ) ( ),
3

( ),

1
( ) ( ),

.3

( )

x y x x k x x
z

y x k y y

x y x x k x x
z

y x k y y

 
= − + + − =

 
= − + − 

 
= − + + − =

 
= − + − 

�
�

�

�
�

�

                                                     (4.15) 

The 4
th

 order Runge-Kutta numerical integration of the trajectory with initial conditions 

on the orbit  (1, 2, 1, 2)  up to 18,000 iterations plotted in figures (1.2) – (1.6). In the 

figures, figure (1.2) – (1.6) (a) shows the orbit, where we pick the initial conditions, 

figure (1.2) – (1.6) (b) shows the invariant manifold, figure (1.2) – (1.6) (c) shows two 

graphs, x1 versus t and x2 versus t, and figure (1.2) – (1.6) (d) shows the graph of the 

differences (x1-x2) versus time. 

Figure (1.2) shows the aspects (a)-to-(d) for uncoupled system (4.15) without any 

perturbation. Adding a small perturbation which is 1
  to the uncoupled Eq. (4.15), we 

obtain the system; 
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3

1 1 1 1 2 1 1 2

1 1 2 1 1 2

3

2 2 2 2 1 2 1 2

2 1 1 2 1

1
( ) ( ) 0.005 0.002 ,
3

( ) 0.01 0.015 ,

1
( ) ( ) 0.003 0.015 ,
3

( ) 0.01 .

x y x x k x x x x

y x k y y x x

x y x x k x x y x

y x k y y y

= − + + − + +

= − + − + −

= − + + − + −

= − + − +

�

�

�

�

                                (4.16) 

Applying the same numerical integration with the same initial conditions, figure (1.3) 

exhibits a chaotic oscillatory behavior and the magnitude of the deviations are rather 

large. Figure (1.4) shows weak coupling which satisfies assumption H1 and not 

assumption H2, with some perturbation. Although the differences are rather chaotic, 

their magnitude is small, which reflects a slight perturbation of the diagonal. The 

deviations’ magnitude reduces further with a strong coupling as in figure (1.5). If the 

coupling strength is increased to k = 2.8 which satisfies assumption H1 and assumption 

H2, as in figure (1.6) the deviations will dampen out almost completely and we conclude 

that the manifold, for all coupling strength k >2.8 persist under small perturbations. This 

is because for synchronization to be of physical interest, the synchronized manifold 

needs to persist under small perturbations both the coupling and component systems.  

From the numerical calculation of the maximum Lyapunov exponent, the delay times 

can result in unsynchronized systems. Such configurations can both enhance the 

absolute stability of the synchronized manifolds and minimize effects of convective 

instabilities. As the delay is increased, there is an effect on the stability of the 

synchronized manifold as can be seen from figures (1.7) to (2.7). Stability of the 

synchronization manifold normally relates with the time delay. If the coupling delays 

are less than a positive threshold, then the network of oscillators will be synchronized. 
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On the other hand, with the increase in coupling delays, the synchronizability of the 

network of oscillators will be restrained and even eventually desynchronized. As can be 

seen from figures (1.7) through (2.5), whenever the delay is less than nine, the 

synchronized manifold is stable. Once the time lag is greater than nine, the 

synchronized manifold is unstable as can be inferred from figures (2.6) and (2.7) 

 

 

 

Figure 1.2 Uncoupled , unperturbed system 
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Figure 1.3 Uncoupled systems with small perturbation 

 

 

Figure 1.4 Weakly Coupled Systems with small perturbation k = 1  
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Figure 1.5 Perturbed systems with Coupling Strength k = 2 

 
Figure 1.6 Perturbed Systems with Coupling Strength k = 2.8 
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From the numerical calculation of the maximum Lyapunov exponent, the delay times 

can result in unsynchronized systems. Such configurations can both enhance the 

absolute stability of the synchronized manifolds and minimize effects of convective 

instabilities. As the delay is increased, there is an effect on the stability of the 

synchronized manifold as can be seen from figures (1.7) to (2.7). Stability of the 

synchronization manifold normally relates with the time delay. If the coupling delays 

are less than a positive threshold, then the network of oscillators will be synchronized. 

On the other hand, with the increase in coupling delays, the synchronizability of the 

network of oscillators will be restrained and even eventually desynchronized. As can be 

seen from figures (1.7) through (2.5), whenever the delay is less than nine, the 

synchronized manifold is stable. Once the time lag is greater than nine, the 

synchronized manifold is unstable as can be inferred from figures (2.6) and (2.7). 

 

Figure  1.7.  Trajectory System for System (1.44) for τ = 0.05 and 0
o

τ =  
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Figure  1.8.  Trajectory System for System (1.44) for τ = 0.09 and 0
o

τ =  

 

Figure 1.9.  Trajectory System for System (1.44) for τ = 0.1 and 0
o

τ =  

 

Figure 2.0. Trajectory System for System (1.44) for τ = 0.5 and 0
o

τ =  
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Figure 2.1.  Trajectory System for System (1.44) for τ = 1 and 0
o

τ =  

 

Figure 2.2.  Trajectory System for System (1.44) for τ = 3  and 0
o

τ =  

 

Figure  2.3.  Trajectory System for System (1.44) for τ = 5 and 0
o

τ =  
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Figure 2.4.  Trajectory System for System (1.44) for τ = 8 and 0
o

τ =  

 

Figure 2.5.  Trajectory System for System (1.44) for τ = 9 and 0
o

τ =  
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Figure 2.6 Trajectory System for system (1.44) τ = 10 and 0

o
τ =  

 
Figure 2.7 Trajectory for system (1.44) for τ = 10.5 and 0

o
τ =  
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CHAPTER   FIVE 

5.0 CONCLUSION 

In this research it has been shown if synchronization exists for a certain coupling 

configuration, then there exist a 0 0k >  such that for all 0k k> , synchronization 

manifold is stable and persist under perturbation. It is seen that this value depends on 

the maximum and minimum Lyapunov exponents over the invariant manifolds 1M  and 

2M  and it also depends on the maximum and minimum eigenvalues of the coupling 

configuration. Thus the number of oscillators coupled, contribute to the determination 

of this value. 

 We established the estimate for bound of τ  for which the synchronized manifold 

remain stable when the oscillators are coupled in an all-to-all configuration. The time 

lag τ  from this study can be seen to be a function of the number oscillators (n), the 

coupling strength (k), and the maximum Lyapunov exponent of the system (3.11).  For 

small k, we see that the stability range is big and for large k stability range is small and 

may not exist for very large k. Several ranges of coupling strengths and time delays that 

caused the oscillators to poop out (Oscillator death).  

The effect of the time delay on the stability of the synchronized manifold can clearly be 

seen from the trajectories of system (1.43). Figures (1.7) to (2.5) show that the 

synchronized state is stable when 9τ <  , thus confirming our proposition. Synchrony of 

networks with time-delayed connections can be achieved at lower coupling strengths 

than within the same network with instantaneous couplings. Even for significant time 
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delays, a stable synchronized state exists at a very low coupling strength, which may 

account for long-range neural synchrony observed in experiments. 

Remarkably, an infinite number of eigenvalues—corresponding to the infinite 

dimensionality of the delay-differential equation linearized about the synchronized 

state—is kept in the left half plane. Stability condition holds for any network in which 

each oscillator receives k signals, independent of all other details of its topology. 

5.1 FURTHER RESEARCH 

Further research needs to be done on stability and persistence of systems coupled via 

periodic boundary conditions where time lag is incorporated. As far as this study is 

concerned, results were obtained from linearization and by considering the local 

dynamics. The effects of non-linear terms have not been addressed. This needs further 

investigation. The study has concentrated on synchronization, stability and persistence 

of oscillators coupled via one and two dimensional Bravis Lattice. There is need to 

consider three or more dimensional lattice coupling. 
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