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OPERATORS

JOTHAM RAYMOND AKANGA

Doctor of Philosophy

(Pure Mathematics)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY

2007



ON THE SPECTRA OF NÖRLUND Q AND
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Notations

1. N;R;R+;C; ∃!;O(1); o(1);Re(z);
∪

∩
;‖.‖;→;9; ]; will denote the set of all nat-

ural numbers; the set of real numbers; the set of all positive real numbers; the

set of all complex numbers; there exists a unique; capital order, i.e., xn = O(1)

if there exists M ∈ R+ such that |xn| ≤ M, ∀n; small order, i.e.,xn = o(1) as

n → ∞ if xn → 0 as n → ∞; real part of the complex number z; lies be-

tween two positive constant multiplies, e.g xN
∪

∩

1
Nα
means that there exists

m,M ∈ R+ such that m
Nα
≤ xN ≤ M

Nα
; norm of; tends to; does not tend to and

end of proof respectively. In general,{. . . } will denote ”the set of” (. . . ) ”the

set sequence of” and (. . . )t ”the transpose of the sequence of” unless otherwise

specified.

2. s; c0; `p(0 < p < ∞); c; `∞; bv; bv0; bs; cs;E∞;wp(0 < p < ∞);wp(0);C1; or

(C1, 1);X
∗, T ∗; Will denote the set of all sequences; the set of all sequences

which converge to zero - null sequences; sequences such that

∞∑

k=0

|xk|
p
<∞;

convergent sequences; bounded sequences,i.e., sequences x such that = supk |xk| <

∞; sequences of bounded variation, i.e., sequence x such that
∑∞
k=0 |xk+1 − xk| <

∞; sequences of bounded variation with xk → 0 as k → ∞; bounded series,

i.e., sequences x such that supn≥0 {
∑n
k=0 |xk|} < ∞; convergent series, i.e.,

sequences x such that
∑∞
k=0 xk is convergent; finite sequences; the space of

strongly Cesaro summable complex sequences of order 1 index p, i.e., the set of

all sequences x = (xk)
∞
k=1 such that there exists a number ` depending on x for

which
∑∞
k=0 |xk − `|

p = o(n); the space of strongly Cesaro summable complex
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sequences of order 1 index p such that ` = 0; Cesaro matrix of order 1, i.e.,

C1 = (ank) =






1
1+n

0 ≤ k ≤ n

0 k > n

;

the space of all continuous linear functionals on X i.e., the continuous dual of

X and the adjoint operator of T respectively.

3. We shall frequently make use of the following special sequences

δ = (1, 1, 1, . . . ); δk = (δkn)
∞
n=0 = (0, 0, . . . , 0, 1, 0, . . . );

4 = (δ0, δ1δ2, . . . );4+ = (δ, δ0, δ1, . . . );

θ = (0, 0, 0, . . . ) - the zero sequence or operator;

4. σ(T,X) will denote the spectrum of T on X, were T ∈ B(X) and σ(T ) will

simply denote the spectrum of T .
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Abstract

The main objectives in this study are to investigate and determine the spectra of

Nörlund means acting as operators on Banach sequence spaces. We also aim to

determine the spectra of almost triangular matrices. Specifically we determine the

spectrum of the Nörlund Q operator on the Banach spaces c0, c, bv0, bv. We also

determine the spectrum of an almost Nörlund Q matrix operator on c0 and c.

In all the cases mentioned we show that the spectrum comprises of the disc

centered at the point ( 1
2
,0) of radius 1

2
. We also construct the fine spectrum of the Q

operator on c.

Apart from the more obvious benefit i.e., the solution of systems of linear equa-

tion of which the spectrum of operators is all about; there are other more subtle, but

equally important applications of the research. A central problem in the whole of

mathematics and even science and engineering; is the determination of the conver-

gence or non- convergence of sequences and series. Mathematics, especially Math-

ematical analysis, develops and is maintained via the concept of convergence of se-

quences and series. Even in applied science and Engineering, one is interested in the

convergence of a sequence or a series of results generated during experimentation.

Established theorems such as the ratio theorems and integral theorem, are not appli-

cable in a variety of sequences and series. Even where they apply, they just determine

convergence and not the limit or sum of the convergent sequence or series. Taube-

rian theorems in Summability Theory handle this problem well.The convergence and

even limit of a convergent sequence or series is determined from the convergence of

some transform of it together with a side condition, (Maddox, 1970); (Boos, 2000)

pp. 167 - 204; (Hardy, 1948) pp. 148 - 177; (Powell and Shah, 1972) pp. 75 - 92; or

(Maddox, 1980) pp. 65 - 80, e.t.c. The spectrum of an operator plays a crucial role

in the development of a Tauberian theory for the operator, (Dunford and Schwartz,

1957) pp. 593 - 597. It is evident from the mentioned books that a Tauberian theory

for Nörlund operators is almost non-existent. Therefore we are confident the results
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developed in the thesis will open a floodgate for such theorems for Nörlund means. In

turn this will find application in diverse fields such as, integral transforms and Fourier

analysis; and in probability and statistics through such areas involving central limit

theorem, almost sure convergence, summation of random series, Markov chains e.t.c;

(Boos, 2000) pp. 256 - 257.

Chapter 1 deals with literature review, a summary of Functional Analysis mate-

rial; as well as classical summability methods; especially those that are pertinent to

our study.

Chapter II deals with the spectrum of the Q matrix on c0 and c. In chapter III

we investigate the spectrum of the Nörlund Q operator on the spaces bv0 and bv.

Chapter IV is concerned with the fine spectrum of the Q matrix operator on c. In

Chapter V we investigate the spectrum of an almost Nörlund Q matrix operator on

c0 and c. Chapter VI gives an overview of the results obtained and points the way

forward for future research interests.

In achieving the results, we used a combination of classical and modern functional

analytic methods as well as Summability methods. Functional analytic methods usu-

ally appeal to the powerful Banach space theorems, such as Hahn - Banach; Banach-

Steinhaus; exetra. Classical Summability methods employ sequence space mapping

theorems such as Silverman - Toeplitz; Kojima - Shur; exetra.
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Chapter 1

Literature review and preliminaries

1.1 Introduction

This chapter is divided into five parts. In part two, we give an overview of the

results achieved on the spectra of infinite matrices. The third part deals with classical

Summability, particularly the concepts that are needed later in the thesis. In part

four and five, we summarize functional analysis material that are needed in the thesis.

1.2 Literature Review

In 1960, E.K. Dorff and A. Wilansky showed that the spectrum of a certain mercerian

Nörlund matrix with ann = 1, contains negative numbers, (Dorff and Wilansky, 1960)

and (Wilansky, 1984), theorem 3. In 1965, A. Brown, P.R. Halmos and H.L. Shields,

determined the spectrum and eigenvalues of the Cesaro operator (C1 operator) on

space `2 of square summable sequences , (Brown et al., 1965). Boyd (1968) extended

the work by determining the spectrum of the same C1 operator on L
p(R+) for p 6= 2,

(Boyd, 1968). Sharma (1972) determined the spectra of conservative matrices and in

particular showed that the spectrum of any Hausdorff method is either uncountable

or finite. Sharma (1975) determined the isolated points of the spectra of conservative
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matrices. Wenger (1975), computed the fine spectra of Holder summability operators

on c - the space of convergent sequences . Deddens (1978) computed the spectra of all

Hausdorff operators on`21. Rhoades (1983) extended Wenger’s work by determining

the fine spectra of weighted mean operators on c. Reade (1985) determined the

spectrum of the Cesaro operator on c0 - the space of null sequences. Okutoyi (1985)

determined the spectrum of C1 on wp(0)(1 ≤ p < ∞). Gonzalez (1985) computed

the fine spectrum of the C1 operator on `p(1 < p < ∞) . In 1989,Okutoyi, J.I. and

Thorpe, B. computed the spectrum of the Cesaro operator of order two (C11 operator)

on c0(c0)- the space of double null sequences, (Okutoyi and Thorpe, 1989). Okutoyi

(1990) determined the spectrum of the C1 operator on bv0 space. In 1992, Okutoyi

extended his work by determining the spectrum of C1 operator on bv space, (Okutoyi,

1992). In 1996, Shafiquel Islam obtained the spectrum of the C1 operator on `∞ -

the space of bounded sequences, (Shafiquel, 1996). In his PhD thesis Mutekhele,

J.S.K. extended Okutoyi’s work by determining the spectrum of C11 operator on c(c)

- the space of double sequences which converge. He went further and determined

the fine spectrum of C11 operator on c(c), (Mutekhele, 1999). In 2003, Coskun. C.,

determined the set of eigenvalues of a special Nörlund matrix as a bounded operator

over some sequence spaces, (Coskun, 2003). In the abstract of the paper, Coskun

remarked that as far as he was concerned there was no investigation on the spectrum

of Nörlund means! In 2005, Okutoyi, J. I and Akanga, J. R., computed the spectrum

of the C1 operator on wp(1 ≤ p < ∞) - the space of strongly Cesaro summable

complex sequences of order 1, index p, (Okutoyi and Akanga, 2005).

1.3 Classical Summability

The central problem of summability theory is to find means of assigning a limit to

a divergent sequence or sum to a divergent series. In such a way that the sequence

or series can be manipulated as though it converges, (Ruckle, 1981), pp. 159 - 161.

The commonest means of summing divergent series or sequences, is that of using an

2



infinite matrix of complex numbers.

Definition 1.3.1 (Sequence to sequence transformation)

Let A = (ank), n, k = 0, 1, 2, . . . be an infinite matrix of complex numbers. Given a

sequence x = (xk)
∞
k=0 define

yn =
∞∑

k=0

ankxk, n = 0, 1, 2, . . . (1.1)

If the series (1.1), converges for all n, then we call the sequence (yn)
∞
n=0, the A -

transform of the sequence (xk)
∞
k=0. If further, yn → a as n→∞, we say that (xk)

∞
k=0

is summable A to a.

There are numerous examples of sequence to sequence transformations. We give a

few well known examples.

Example 1.3.1 (Cesaro matrix - means)

Consider the matrix A = (ank), where

ank =






1
1+n
, 0 ≤ k ≤ n

0, k > n

(1.2)

and a sequence (xk)
∞
k=0 = (1, 0, 1, 0, . . . ), then the sequence (xk)

∞
0 is summable by A

to 1
2
. The matrix A is called the Cesaro matrix of order 1 and is usually denoted by

(C, 1) or C1. Cesaro means of other orders are also well known. The most general of

them is the (C,α) means which are given by;

ank =






Aα−1n−k

Aαn
, 0 ≤ k ≤ n

0, k > n

(1.3)

Where Aαn =




α + n

n



 = Γ(α+n+1)
Γ(α+1)Γ(n+1)

, α > −1.

Example 1.3.2 (Hölder means)

3



Closely related to the Cesaro means (C, k), k ∈ N, is the Hölder means (H, k). This

is simply the product of (C, 1) means k - times. Its matrix is given by:

h
(m)
nk = (h

(1)
nk )(h

(m−1)
nk ) (1.4)

where h
(1)
nk = (C, 1), (Powell and Shah, 1972) pp.46-49

Example 1.3.3 (Nörlund means)

The transformation given by

yn =
1

Pn

n∑

k=0

pn−kxk, n = 0, 1, 2, . . . (1.5)

,where Pn = p0+p1+ ∙ ∙ ∙+pn 6= 0, is called a Nörlund means and is denoted by (N, p).

Its matrix is given by

ank =






pn−k
Pn
, 0 ≤ k ≤ n

0, k > n

(1.6)

In matrix (1.6) if p0 = 1, p1 = −2, p2 = p3 = ∙ ∙ ∙ = 0, then A = (ank) transforms

the unbounded sequence (xk)
∞
k=0 = (1, 2, 4, 8, 16, . . . ) to zero. If pn = 1 for each

n = 0, 1, 2, . . . ,then (ank) = (C, 1) , (Powell and Shah, 1972) pp. 45 - 46. Similarly

in matrix (1.6) if p0 = 1, p1 = 1, p2 = p3 = p4 = ∙ ∙ ∙ = 0, then (ank) = (qnk) - the Q

matrix given by

qnk =






1, n = k = 0

1
2
, n− 1 ≤ k ≤ n

0, Otherwise

(1.7)

That is

Q = (qnk) =

















1 0 0 0 . . .

1
2

1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

0 0 0 1
2
. . .

. . .

















(1.8)

4



Which is the matrix of our interest in this thesis.

If pn =




n+ k − 1

k − 1



 = Γ(n+k)
Γ(n+1)Γ(k)

, k > 0 then (N, pn) is the (C, k) means, (Hardy,

1948) pp. 64 - 65.

Definition 1.3.2 (Series to series transformation).

The transformation of the series
∑∞
k=0 xk into a convergent series

∑∞
n=0 yn by an

infinite matrix A = (ank) so that

yn =
∞∑

k=0

ankxk (1.9)

is called series to series transformation. For further details on series transformations,

see (Vermes, 1949).

Definition 1.3.3 (Triangle and triangular matrices).

A matrix A is called triangular if ank = 0 for k > n, it is called a triangle if it is

triangular and ann 6= 0 for all n (Wilansky, 1984) pp.7.

Definition 1.3.4 (Almost triangular matrix).

A matrix A is called almost triangular if ank = 0, ∀ k > n+m for some m∈ N,m≥ 1.

A shall be called almost triangle if A is almost triangular and ank 6= 0, ∀k = n.

1.4 General Results in Classical Summability

Definition 1.4.1 (Regular Method, Conservative method)

Let A = (ank), n = 0, 1, 2, . . . be an infinite matrix of complex numbers.

i. If the A - transform of any convergent sequence of complex numbers

exists and converges then A is called a conservative method. We

them write A ∈ (c, c)

5



ii. If A is conservative and preserves limits, i.e.

lim
n→∞

yn = lim
n→∞

xn = a, a ∈ C; where(yn)
∞
n=0 (1.10)

is the A transform of the convergent sequence (xn)
∞
n=0, then A is

called regular. We then write A ∈ (c, c;P )

Theorem 1.1 (Silverman - Toeplitz)A ∈ (c, c;P ) if and only if

i. limn→∞ ank = 0 for each fixed k, k = 0, 1, 2, . . . ;

ii. limn→∞∑∞k=0 ank = 1;

iii. supn≥0{
∑∞
k=0 |ank|} ≤M <∞,M ∈ R

+.

Proof: (Hardy, 1948), pp.44 - 46, (Petersen, 1966) and Maddox (1970), pp 165 - 166.

Remark 1.4.1 The Silverman - Toeplitz theorem gives the complete class of ma-

trices (ank) which transform all convergent sequences (xn)
∞
0 such that limn→∞ xn =

limn→∞ yn by means of the linear equations 1.1

Theorem 1.2 (Kojima - Shur)A ∈ (c, c) if and only if

i. ank → ak as n→∞ for each fixed k ≥ 0;

ii.
∑∞
k=0 ank → a as n→∞;

iii. supn≥0{
∑∞
k=0 |ank|} <∞.

Proof : (Maddox, 1970), pp. 166 - 167; (Ruckle, 1981), pp. 104 - 105; (Powell and

Shah, 1972) and (Wilansky, 1984), pp. 5 - 6.

Theorem 1.3 A ∈ (c0, c0) if and only if

i. limn→∞ ank = 0 for each fixed k;

ii. supn≥0{
∑∞
k=0 |ank|} <∞.

6



Proof: (Hardy, 1948), pp. 42 - 60; (Maddox, 1970), pp. 165 - 167.

Theorem 1.4 A ∈ (`1, `1) if and only if

i.
∑∞
n=0 |ank| <∞; for each k;

ii. supk
∑∞
n=0 |ank| <∞.

Proof: (Limaye, 1996), pp. 88 - 90 as well as pp. 154 - 156

Definition 1.4.2 (Spaces bv and bv0)

The sequence space bv is such that x is ∈ bv if

∞∑

k=0

|xk+1 − xk| <∞ (1.11)

And x ∈ bv0 if

∞∑

k=0

|xk+1 − xk| <∞,

with xk → 0 as k → ∞. That is, bv0 is the space of sequence of bounded variation

with limit zero.

Theorem 1.5 A matrix A = (ank) ∈ (bv0, bv0) if and only if

i. limn→∞ ank = 0 for each k ≥ 0;

ii. supm≥0
∑∞
n=0 |

∑m
k=0(ank − an−1,k)| <∞.

Theorem 1.6 A matrix A = (ank);n, k ≥ 0 ∈ (bv, bv) if and only if

i. supm≥0
∑∞
n=0 |

∑m
k=0(ank − an−1,k)| <∞;

ii.
∑∞
k=0 ank Converges, for all n ≥ 0.

Moreover, ‖A‖(bv,bv) = ‖A‖(bv0,bv0) = supm≥0
∑∞
n=0 |

∑m
k=0(ank − an−1,k)|

Proof :For the proof of theorems (1.5) and (1.6), see (Stieglitz and Tietz, 1977) , pp.

1 - 16 and (Jakimovski and Russel, 1972) , pp. 345 - 353.

Remark 1.4.2 For a more comprehensive characterization of matrix classes , one

may also consult (Maddox, 1980), pp. 9 - 18.
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1.5 Banach Spaces

Definition 1.5.1 (Paranorm)

A paranorm p, on a linear space X, is a function p : X → R such that

i. p(θ) = 0

ii. p(x) ≥ 0

iii. p(x) = p(−x)

iv. p(x+ y) ≤ p(x) + p(y)

v. If (λn)
∞
0 is a sequence of scalars with λn → λ and (xn)

∞
0 is a sequence

of points in X with xn → x, then p(λnxn − λx) → 0 (continuity of

multiplication)

Definition 1.5.2 (Seminorm/norm)

A seminorm p, on a linear space X, is a function p : X → R such that

i. p(x) ≥ 0

ii. p(x+ y) ≤ p(x) + p(y)

iii. p(λx) = |λ| p(x), λ ∈ K(RorC)

If in addition to these conditions if a seminorm satisfies the condition that p(x) = θ

iff x = θ, then we call it a norm; θ denotes the zero vector.

Definition 1.5.3 (Linear topological space)

A linear topological space is a linear space X which has a topology T , such that

addition and scalar multiplication in X are continuous. If T is given a metric, we

speak of a linear metric space.
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Definition 1.5.4 (Schauder basis)

Let X be a paranormed or normed space with a paranorm p or norm ‖.‖. A sequence

(bk)
∞
0 of elements of X is called a Schauder basis if and only if for every x ∈ X, ∃!

Sequence (λk)
∞
0 of scalars such that

x =
∞∑

k=0

λkbk (1.12)

That is, p (x−
∑n
k=0 λkbk)→ 0 as n→∞; or in norm notation ‖x−

∑n
k=0 λkbk‖ → 0

as n→∞.

Example 1.5.1 4 =
(
δk
)∞
0
= (δ0, δ1, δ2, . . . ) is a Schauder basis for the spaces

c0; bvo; `p(0 < p < 1); cs; s.

4+ = (δ, δ0, δ1, δ2, . . . ) is a Schauder basis for the spaces c; bv. The spaces `∞ and bs

have no Schauder basis.

The requirement that X ⊃ E∞ should have a basis 4 = (δ0, δ1δ2, . . . ), is equivalent

to ‖x[n]− x‖x → 0 as n→∞, ∀x ∈ X, where x[n] = (x0, x1, x2, . . . , xn, 0, 0, . . . ) is the

nthsection of x. In this case we say that X has AK (abschnittskonvergent).

Example 1.5.2 c0; c; `p(p ≥ 1); `∞; bv; bv0; cs; bs;wp(p ≥ 1) are all normed linear

spaces.

Their norms are as follows: c0; c; `∞ have the same natural norm, namely ‖x‖ =

supn≥0{|xn|}; `p(1 ≤ p <∞) has a natural norm

‖x‖ =

(
∞∑

n=0

|xn|
p

) 1
p

; bv (1.13)

has a natural norm

‖x‖ = lim
n→∞

|xn|+
∞∑

k=0

|xk+1 − xk| ; (1.14)

bv0 has a norm ‖x‖ =
∑∞
k=0 |xk+1 − xk| ; cs and bs have the same natural norm given

by

‖x‖ = sup
n≥0

{∣∣
∣
∣
∣

n∑

k=0

xk

∣
∣
∣
∣
∣

}

. (1.15)
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Definition 1.5.5 (Banach Space)

A Banach space is a complete normed linear space. Completeness means that if

‖xm − xn‖ → 0 as m,n → ∞, where xn ∈ X, then there exists x ∈ X such that

‖xn − x‖ → 0 as n→∞.

Example 1.5.3 (Banach spaces). All the spaces in example 1.5.2 are Banach spaces

under their natural norms.

Definition 1.5.6 (Frechet space), - FK space

A Frechet space is a complete linear metric space. An FK - space is a Frechet space

with continuous coordinates. A normed FK-space is called a BK- space.

NOTE: Every Frechet space with a Schauder basis is an FK - space. Obvious ex-

amples of FK - spaces are c0; c; `p(p ≥ 1); cs; bv; bv0;wp(p ≥ 1). See (Bennett, 1971),

(Bennett, 1972b), (Bennett, 1972a), (Bennett and Kalton, 1972), (Brown et al., 1969),

and (Maddox, 1970).

1.6 Linear Operators and Functionals

Definition 1.6.1 (Linear operator)

Let X and Y be linear spaces. Then a function f : X → Y is called a linear operator

or map or transformation if and only if for all x, y ∈ X and all λ, μ ∈ K

f(λx+ μy) = λf(x) + μf(y). (1.16)

Definition 1.6.2 (Linear functional)

f is a linear functional on X if f : X → K is a linear operator, i.e., a linear functional

is a real or complex valued linear operator.

Definition 1.6.3 (Bounded linear operator)
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A linear operator A : X → Y is called bounded if there exists a constant M such that

‖A(x)‖ ≤M‖x‖, ∀x ∈ X (1.17)

NOTE: A bounded functional on X satisfies

|f(x)| ≤M‖x‖, ∀x ∈ X. (1.18)

NOTATION: Let X and Y be linear spaces. Then L(X,Y ) denotes the set of all

linear operators on X into Y . L(X,K), the set of all linear functionals on X. It is

usual to denote this by X+ and call it the algebraic dual of X.

Definition 1.6.4 (Continuous dual of X)

Let X and Y be normed spaces. Then B(X,Y ) denotes the set of all bounded (or

continuous) linear operators on X into Y . B(X,K), the set of all bounded (contin-

uous) functionals on X. It is usual to denote this by X∗ and call it the continuous

dual of X.

Remark 1.6.1 Let X be a Banach space, then it is well known, (Maddox, 1970),

page 107 theorem 7, that B(X,X) = B(X), the linear space of all bounded linear

operators T on X into itself is a Banach space with norm.

‖T‖ = sup
‖x‖≤1

‖Tx‖ (1.19)

This norm induces a metric topology, the uniform operator topology on B(X). See

(Dunford and Schwartz, 1957), page 475.

Definition 1.6.5 (Adjoint operator T ∗)

The adjoint T ∗ of linear operator T ∈ B(X,Y ) is the mapping from Y ∗ to X∗ defined

by

T ∗of = foT, f ∈ Y ∗ (1.20)
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Theorem 1.7 T ∗ is linear and bounded. Moreover, ‖T ∗‖ = ‖T‖.

Proof : (Dunford and Schwartz, 1957), p.478 ; (Goldberg, 1966), page 54; and

(Kreyszig, 1980), page 232.

Theorem 1.8 A Linear operator T ∈ B(X,Y ) has a bounded inverse T−1 defined

on all of Y if and only if its adjoint T ∗ has a bounded inverse (T ∗)−1 defined on all

of X∗. When these inverses exist (T−1)∗ = (T ∗)−1.

Proof: (Dunford and Schwartz, 1957), page 479 and (Goldberg, 1966), page 60.

Definition 1.6.6 (Resolvent operator Rλ = (T − λI)−1)

Let X be a non-empty Banach space and suppose that T : X → X. With T , we

associate the operator Tλ = T−λI, λ ∈ C, I the identity operator onX. If Tλ = T−λI

has an inverse, we denote it by Rλ(T ) or simply Rλ and call it the resolvent operator

of T .

Definition 1.6.7 (Resolvent set ρ(T ), spectrum σ(T ))

Let X be a non - empty Banach space and suppose that T : X → X. The resolvent

set ρ(T ) of T is the set of complex numbers λ for which (T−λI)−1 exists as a bounded

operator with domain X. The spectrum σ(T ) of T is the complement of ρ(T ) in C.

Theorem 1.9 The resolvent set ρ(T ) of a bounded linear operator T on a Banach

space X is open; hence the spectrum σ(T ) of T is closed.

Proof :(Taylor and Lay, 1980) , page 273 and (Kreyszig, 1980) page 376.

Theorem 1.10 If X is any Banach space and T ∈ B(X), then σ(T ) 6= φ.

Proof: Kreyszig (1980), page 390; (Taylor and Lay, 1980) , page 278.

Theorem 1.11 The Spectrum σ(T ) of a bounded linear operator T : X → X on a

Banach space X is compact and lies in the disc given by:

|λ| ≤ ‖T‖ (1.21)
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Proof: See (Kreyszig, 1980), page 377.

Theorem 1.12 Let T ∈ B(X), where X is any Banach space, then the spectrum

of T ∗ is identical with the spectrum of T . Furthermore, Rλ(T
∗) = (Rλ(T ))

∗ for

λ ∈ ρ(T ) = ρ(T ∗).

Proof : See (Dunford and Schwartz, 1957) , page 568 and (Goldberg, 1966), page 71.

Remark 1.6.2 The key theorems of functional analysis; Baire category theorem; Ba-

nach - steinhaus theorem (Uniform boundedness theorem); open mapping theorem;

closed graph theorem and Hahn-Banach extension theorem are assumed as necessary

for this work although not stated here. They are proved in most standard text books of

functional analysis.See (Maddox, 1970); (Wilasky, 1964); (Wilansky, 1978);(Wilan-

sky, 1984); (Lusternik and Sobolev, 1961) and (Jain et al., 1995).

In the next chapter we determine the spectrum of the Q operator on c and c0 spaces.
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Chapter 2

The Spectrum of Q Operator on c0

and c spaces

The chapter is divided into two sections. Section one deals with the spectrum of Q

as an operator on c0. In section two we determine the spectrum of Q matrix acting

as an operator on c.

2.1 The spectrum of Q on c0

In this section we show that Q ∈ B(c0) and determine its spectrum. The following

corollary arises from theorem (1.3), chapter I.

Corollary 2.1.1 It is clear that Q ∈ B(c0) since limn qnk = 0 for each k, (see

matrix (1.7))

||Q|| = sup
n

∞∑

k=0

|qnk| = sup(1, 1, 1 . . . ) = 1 (2.1)

By theorem (1.7) , ||Q|| = ||Q∗|| = 1

Lemma 2.1.1 Each bounded linear operator T : X −→ Y , where X = c0, `1, c and

Y = c0, `p(1 ≤ p < ∞), `∞ determines and is determined by an infinite matrix of
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complex numbers.

Proof: See (Taylor, 1958) pages 217 - 219

Lemma 2.1.2 Let T : c0 −→ c0 be a linear map and define T
∗ : `1 −→ `1 by

T ∗ o g = g o T, g ∈ c∗
0
= `1. Then T must be given by a matrix by lemma(2.1.1) and

moreover T ∗ : `1 −→ `1 is the transposed matrix of T .

Proof: See (Wilansky, 1984) page 266.

Corollary 2.1.2 Let Q : c0 −→ c0 where Q is the Nörlund matrix (1.8).

Then Q∗ ∈ B(`1), moreover

Q∗ =











1 1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

. . .











(2.2)

Theorem 2.1 Q ∈ B(c0) has no Eigenvalues.

Proof: Suppose Qx = λx for x 6= θ in c0 and λ ∈ C then













1 0 0 0 . . .

1
2

1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

. . .



























x0

x1

x2

x3
...














= λ














x0

x1

x2

x3
...














(2.3)

Implies

x0 = λx0
1

2
(x0 + x1) = λx1

1

2
(x1 + x2) = λx2

. . .
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1

2
(xn−1 + xn) = λxn, n ≥ 1 (2.4)

Solving system (2.4) , we have that if x0 is the first non-zero entry of x, then λ = 1.

But λ = 1 implies that x0 = x1 = x2 = ∙ ∙ ∙ = xn = . . .

Which shows that x is in the span of δ = (1, 1, 1 . . . ) and hence does not tend to

zero as n tends to infinity. Hence λ = 1 is not an eigenvalue of Q ∈ B(c0). When

xn+1, n = 0, 1, 2, 3, . . . , is the first non-zero entry of x, then λ =
1
2
. Solving system

(2.4) with λ = 1
2
results in xn = 0, n = 0, 1, 2, . . . which is a contradiction. Hence

λ = 1
2
cannot be an eigenvalue of Q ∈ B(c0).

Theorem 2.2 The eigenvalues of Q∗ ∈ B(`1) is the set
{

λ ∈ C : |λ−
1

2
| <
1

2

}

∪ {1}

Proof: Suppose Q∗x = λx, for x 6= θ and λ ∈ C

Then













1 1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

0 0 0 1
2
. . .

. . .



























x0

x1

x2

x3
...














= λ














x0

x1

x2

x3
...














(2.5)

That is,

x0 +
1
2
x1 = λx0

1
2
x1 +

1
2
x2 = λx1

1
2
x2 +

1
2
x3 = λx2

...
...

1
2
xn +

1
2
xn−1 = λxn, n ≥ 1

(2.6)
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Solving system(2.6) for x1, x2, x3, . . . , xn, . . . in terms of x0 gives

x1 = 2λ(1− 1
λ
)x0

x2 = 22λ2(1− 1
2λ
)(1− 1

λ
)x0

x3 = 23λ3(1− 1
2λ
)2(1− 1

λ
)x0

. . .

(2.7)

In general,

xn = (2λ)
n(1−

1

2λ
)n−1(1−

1

λ
)x0, n ≥ 1 (2.8)

Now,

lim
n−→∞

|
xn+1

xn
| = lim

n−→∞

∣
∣
∣
∣
(2λ)n+1(1− 1

2λ
)n(1− 1

λ
)

(2λ)n(1− 1
2λ
)n−1(1− 1

λ
)

∣
∣
∣
∣ (2.9)

= lim
n−→∞

∣
∣
∣
∣2λ(1−

1

2λ
)

∣
∣
∣
∣ (2.10)

=

∣
∣
∣
∣2λ(1−

1

2λ

∣
∣
∣
∣ = m (2.11)

say for some m ∈ R such that m ≥ 0.

By the ratio test (xn) ∈ `1 iff m < 1

That is, iff
∣
∣2λ(1− 1

2λ
)
∣
∣ < 1. Or iff |λ− 1

2
| < 1

2
.

That is, the series
∑∞
n=0 |xn| converges for all λ in the circular disc centered at the

point (1
2
, 0) of radius 1

2
.

It is clear that λ = 1 is an eigenvalue corresponding to the eigenvector (x0, 0, 0, . . . )
t.

Where x0 is any real or complex number. This is the case since (x0, 0, 0, . . . )
t ⊂ `1

for any x0 ∈ C
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Theorem 2.3 The spectrum σ(Q) of Q∈ B(c0) is the set
{

λ ∈ C

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2

}

Proof : By virtue of theorem (2.2) and the fact that σ(Q∗) = σ(Q) by theorem (1.12),

we show that (Q − λI)−1 ∈ B(c0) for all λ ∈ C such that
∣
∣λ− 1

2

∣
∣ > 1

2
. To this end

we solve the system (Q− λI)x = y for x in terms of y to obtain:

x0 =
−1

λ(1− 1
λ
)
y0

x1 =
−1

2λ2(1− 1
2λ
)(1− 1

λ
)
y0 −

1

λ(1− 1
2λ
)
y1

x2 =
−1

4λ3(1− 1
2λ
)2(1− 1

λ
)
y0 −

1

2λ2(1− 1
2λ
)2
y1 −

1

λ(1− 1
2λ
)
y2

x3 =
−1

8λ4(1− 1
2λ
)3(1− 1

λ
)
y0 −

1

4λ3(1− 1
2λ
)3
y1 −

1

2λ2(1− 1
2λ
)2
y2 −

1

λ(1− 1
2λ
)
y3

x4 =
−1

24λ5(1− 1
2λ
)4(1− 1

λ
)
y0 −

1

23λ4(1− 1
2λ
)4
y1 −

1

22λ3(1− 1
2λ
)3
y2

−
1

2λ2(1− 1
2λ
)2
y3 −

1

λ(1− 1
2λ
)
y4

. . . (2.12)

So that in general,

xn =
−1

2nλn+1(1− 1
2λ
)n(1− 1

λ
)
y0 −

1

2n−1λn(1− 1
2λ
)n
y1−

1

2n−2λn−1(1− 1
2λ
)n−1
y2 −

1

2n−3λn−2(1− 1
2λ
)n−2
y3 −

∙ ∙ ∙ −
1

λ(1− 1
2λ
)
yn, n ≥ 0 (2.13)

That is,

xn = −
1

2nλn+1(1− 1
2λ
)n(1− 1

λ
)
y0 −

1

2n−1λn(1− 1
2λ
)n
y1 −

1

2n−kλn−k+1(1− 1
2λ
)n−k+1

yk, 0 ≤ k ≤ n. (2.14)
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The system(2.14) yields the matrix of (Q− λI)−1 which we denote by M . That is

M =















− 1
λ(1− 1

λ
)

0 0 0 . . .

− 1
2λ2(1− 1

2λ
)(1− 1

λ
)

− 1
λ(1− 1

2λ
)

0 0 . . .

− 1
22λ3(1− 1

2λ
)2(1− 1

λ
)
− 1
2λ2(1− 1

2λ
)2

− 1
λ(1− 1

2λ
)

0 . . .

− 1
23λ4(1− 1

2λ
)3(1− 1

λ
)
− 1
22λ3(1− 1

2λ
)3
− 1
2λ2(1− 1

2λ
)2
− 1
λ(1− 1

2λ
)
. . .

. . .















Note that,

(Q− λI) =M−1 =














(1− λ) 0 0 0 . . .

1
2

(1
2
− λ) 0 0 . . .

0 1
2

(1
2
− λ) 0 . . .

0 0 1
2

(1
2
− λ) . . .

. . .














(2.15)

It can be shown that MM−1 =M−1M = I

We now check that M ∈ B(c0). Note that matrix M may be given the formula

M = (mnk) =






− 1

2nλn+1(1− 1
2λ)

n
(1− 1λ)

, k = 0

− 1

2n−kλn−k+1(1− 1
2λ)

n−k+1 , 1 ≤ k ≤ n

0, k > n

(2.16)

The columns converge to zero if

∣
∣
∣ (n+1)

thterm
nthterm

∣
∣
∣ < 1

Using formula (2.16), when k = 0, we have

∣
∣
∣
∣
−2nλn+1(1− 1

2λ
)n(1− 1

λ
)

−2n+1λn+2(1− 1
2λ
)n+1(1− 1

λ
)

∣
∣
∣
∣ < 1 (2.17)

Which implies that,
∣
∣
∣ 1
2λ(1− 1

2λ
)

∣
∣
∣ < 1
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or
∣
∣λ− 1

2

∣
∣ > 1

2

Similarly, for columns k ≥ 1, we have
∣
∣
∣
∣
−2n−kλn−k+1(1− 1

2λ
)n−k+1

−2n−k+1λn−k+2(1− 1
2λ
)n−k+2

∣
∣
∣
∣ < 1 (2.18)

⇒

∣
∣
∣
∣

1

2λ(1− 1
2λ
)

∣
∣
∣
∣ < 1

or

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ >
1

2

So that all columns converge to zero for all λ ∈ C such that
∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ >
1

2

Hence condition (i) of theorem(1.3) is satisfied when λ ∈ C is such that |λ− 1
2
| > 1

2
.

We now check condition (ii)of the same theorem. But before that, we have a remark.

Remark 2.1.1 For any matrix A = (ank)n,k≥0, if limn ank = 0, ∀k ≥ 0; then

supn
∑∞
k=0 |ank| <∞.

See (Maddox, 1970) page 164 or (Reade, 1985) page 266.

Summing the entries of the matrix(2.16) along the nth row, we have

∞∑

k=0

|mnk| =

∣
∣
∣
∣

−1
2nλn+1(1− 1

2λ
)n(1− 1

λ
)

∣
∣
∣
∣+

n∑

k=1

∣
∣
∣
∣

−1
2n−kλn−k+1(1− 1

2λ
)n−k+1

∣
∣
∣
∣ (2.19)

= εn, say, for n ≥ 0

By Remark (2.1.1)

sup
n
{εn} ≤ K <∞,
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provided λ ∈ C is such that
∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ >
1

2

So that M = (Q− λI)−1 ∈ B(c0) if λ ∈ C is such that
∣
∣λ− 1

2

∣
∣ > 1

2
.

Which implies that (Q− λI)−1 /∈ B(c0) for all λ ∈ C such that
∣
∣λ− 1

2

∣
∣ ≤ 1

2

2.2 The Spectrum of Q as an Operator On c

In this section the spectrum of Q ∈ B(c) is determined.

Corollary 2.2.1 Q ∈ B(c), moreover

‖Q‖ = ‖Q∗‖ = 1

Proof : The validity of parts (i) and (iii) of theorem(1.2) for Q matrix easily follows

from corollary (2.1.1). From matrix (1.8), it is evident that

∞∑

k=0

qnk =
n∑

k=0

qnk = 1, for each n (2.20)

So that limn
∑n
k=0 qnk = 1

Therefore all the conditions of theorem (1.2) are satisfied . Hence Q ∈ B(c).

Theorem 2.4 Let T : c −→ c be a linear map and define T ∗ : c∗ −→ c∗ i.e.,

T ∗ : `1 −→ `1 by T ∗(g) = goT, g ∈ c∗ ≡ `1. Then both T and T ∗ must be given by a

matrix. See Lemma (2.1.2). More over T ∗ : `1 −→ `1 is given by the matrix

A∗ = T ∗ =




χ(limA) (vn)

∞
0

(ak)
∞
0 At



 (2.21)
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=














χ(limA) v0 v1 v2 . . .

a0 a00 a10 a20 . . .

a1 a01 a11 a21 . . .

a2 a02 a12 a22 . . .
...

...
...

... . . .














(2.22)

Where χ(limA)=limA(δ)−
∑∞
k=0 limA δ

k;

vn = χ(PnoT );

ank = Pn(T (δ
k)) = (T (δk))n

and ak = lim
n−→∞

ank (2.23)

Proof : See (Wilansky, 1984) page 267.

Corollary 2.2.2 Let Q : c −→ c. Then Q∗ ∈ B(`1) and

Q∗ =














1 0 0 0 0 . . .

0 1 1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .














(2.24)

Proof: By theorem (2.4)

Q∗ =




χ(limA) (vn)

∞
0

(ak)
∞
0 Qt



 (2.25)

But for Q matrix, vn = θ and (ak)
∞
0 = θ, since limn−→∞ qnk = 0 ∀ k ≥ 0.

(PnoT )δ = 1, ∀ n ≥ 0;

and
∑∞
k=0(PnoT )δ

k = 1, so that

vn = χ(PnoT )
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= (PnoT )δ −
∞∑

k=0

(PnoT )δ
k

which implies that

v0 = 1− (1 + 0 + 0 + . . . ) = 1− 1 = 0

v1 = 1− (
1

2
+
1

2
+ 0 + 0 + . . . ) = 1− 1 = 0

v2 = 1− (0 + 0 +
1

2
+
1

2
+ 0 + 0 + . . . ) = 1− 1 = 0 (2.26)

...

vn = 0, n ≥ 0

Hence matrix (2.25) becomes

Q∗ =




χ θ

θ Qt



 (2.27)

Where

χ = (lim o Q)δ −
∞∑

k=0

(lim o Q)δk, (2.28)

lim ∈ c∗. That is

χ = lim δ −
∞∑

k=0

ak = 1− 0 = 1 (2.29)

So that matrix (2.27) becomes matrix (2.24)

Theorem 2.5 Q ∈ B(c) has one Eigenvalue, namely λ = 1. Which corresponds to

the Eigenvector x = δ = (1, 1, 1 . . . )

Proof : Suppose Qx = λx, x, 6= θ in c and λ ∈ C. Then

solving the system as in the proof of theorem (2.1) we have that if x0 is the first

non-zero entry of the vector x, then λ = 1. But λ = 1 implies that

x0 = x1 = x2 = ∙ ∙ ∙ = xn = . . .
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Which shows that x is in the span of δ. But δ = (1, 1, 1, . . . ) ∈ c. Hence λ = 1 is an

eigenvalue of Q corresponding to the eigenvector δ = (1, 1, 1, . . . ).

When xn+1, n = 0, 1, 2, . . . is the first non-zero entry of x, then λ =
1
2
.

Solving the system with λ = 1
2
results in xn = 0, n = 0, 1, 2, . . . . Which is a contra-

diction. Hence λ = 1
2
cannot be an eigenvalue of Q ∈ B(c).

Therefore, λ = 1 is the only eigenvalue of Q ∈ B(c).

Theorem 2.6 The Eigenvalues of Q∗ ∈ B(`1) form the set
{

λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ <
1

2

}

∪ {1}

Proof: Suppose Q∗x = λx, x 6= θ and λ ∈ C. Then













1 0 0 0 0 . . .

0 1 1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .



























x0

x1

x2

x3
...














= λ














x0

x1

x2

x3
...














(2.30)

i.e.

x0 = λx0

x1 +
1
2
x2 = λx1

1
2
(x2 + x3) = λx2

1
2
(x3 + x4) = λx3

. . .

(2.31)

In general 1
2
(xn + xn+1) = λxn, n ≥ 2

Solving system (2.31) with λ = 1 and x0 6= 0 gives the vectors

x(1) = (x0, 0, 0 . . . ) (2.32)
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x(2) = (x0, x1, 0, 0, . . . ), (2.33)

Where x0, x1 ∈ C

Clearly, both x(1) and x(2) ∈ `1 for any x1, x2 ∈ C. So that λ = 1 is an Eigenvalue of

Q∗ ∈ B(`1).

Similarly, solving the system for xn, n ≥ 2 in terms of x1, yields

x2 = 2(λ− 1)x1

x3 = 22(λ− 1)(λ− 1
2
)x1

x4 = 23(λ− 1)(λ− 1
2
)2x1

x5 = 24(λ− 1)(λ− 1
2
)3x1

. . .

(2.34)

In general,

xn = 2
n−1λn−1(1−

1

λ
)(1−

1

2λ
)n−2x1, n ≥ 2. (2.35)

Now,

lim
n−→∞

∣
∣
∣
∣
xn+1

xn

∣
∣
∣
∣ = limn−→∞

∣
∣
∣
∣
2nλn(1− 1

λ
)(1− 1

2λ
)n−1

2n−1λn−1(1− 1
λ
)(1− 1

2λ
)n−2

∣
∣
∣
∣ (2.36)

=

∣
∣
∣
∣2λ(1−

1

2λ
)

∣
∣
∣
∣ = m, (2.37)

Say for some m ∈ R such that m ≥ 0. By the ratio test, x ∈ `1 if m < 1;

i.e., iff
∣
∣2λ(1− 1

2λ
)
∣
∣ < 1. or iff

∣
∣λ− 1

2

∣
∣ < 1

2
. So that

{
λ ∈ C : |λ− 1

2
| < 1

2

}
∪ {1} form

the set of Eigenvalues of Q∗ ∈ B(`1)

Theorem 2.7 The spectrum σ(Q) of Q ∈ B(c) is the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}
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Proof: By virtue of theorem (2.6) and the fact that σ(Q∗) = σ(Q), it is enough to

show that

M = (Q− λI)−1 ∈ B(c)

for all λ ∈ C such that |λ− 1
2
| > 1

2
. But from the proof of theorem (2.3), limnmnk = 0

for each k and supn |mnk| < ∞, provided |λ −
1
2
| > 1

2
. Which deals with parts (i)

and (iii) of theorem (1.2). Summing the rows of matrix M in equation (2.16) and

comparing with the sequence (εn)n≥1 of equation (2.19), we get
∣
∣
∣
∣
∣

n∑

k=0

mnk

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

−1
2nλn+1(1− 1

2λ
)n(1− 1

λ
)

∣
∣
∣
∣+

∣
∣
∣
∣
∣

n∑

k=1

−1
2n−kλn−k+1(1− 1

2λ
)n−k+1

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣

−1
2nλn+1(1− 1

2λ
)n(1− 1

λ
)

∣
∣
∣
∣+

n∑

k=1

∣
∣
∣
∣

−1
2n−kλn−k+1(1− 1

2λ
)n−k+1

∣
∣
∣
∣ = εn, n ≥ 0 (2.38)

So that (
∑∞
k=0mnk)

∞
n=1
is a decreasing sequence of numbers which is bounded provided

λ ∈ C is such that
∣
∣λ− 1

2

∣
∣ > 1

2
. All these implies that

lim
n−→∞

∞∑

k=0

mnk

exists, provided λ ∈ C is such that
∣
∣λ− 1

2

∣
∣ > 1

2
. Which deals with part (ii) of theorem

(1.2). That is M = (Q− Iλ)−1 ∈ B(c), ∀λ ∈ C such that
∣
∣λ− 1

2

∣
∣ > 1

2
.

Hence M = (Q− λI)−1 /∈ B(c) for all λ ∈ C such that
∣
∣λ− 1

2

∣
∣ ≤ 1

2
. Hence the

theorem.

Remark 2.2.1 Q : c0 −→ c0; Q : c −→ c have the same spectrum despite the fact

that Q ∈ B(c0) has no Eigenvalues and Q ∈ B(c) has λ = 1 as its only Eigenvalue.

In the next chapter we determine the spectrum of Q on bv0 and bv.
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Chapter 3

The Spectrum of Q as an Operator

On bv0 And bv spaces

This chapter is divided into two sections. Section One deals with bv0 space while

section two deals with bv space.

3.1 The Spectrum of Q ∈ B(bv0)

The section is concerned with the spectrum of Q ∈ B(bv0). The following corollary

arises from Theorem (1.5) of Chapter 1.

Corollary 3.1.1 Q : bv0 −→ bv0 and Q ∈ B(bv0) with ‖Q‖bv0 = 1

Proof: Using equation (1.7) for matrix Q and Letting yn =
∑∞
k=0 qnkxk, where xn ∈

bv0;
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we have:

y0 = x0

y1 =
1
2
(x0 + x1)

y2 =
1
2
(x1 + x2)

y3 =
1
2
(x2 + x3)

...

yn =
1
2
(xn−1 + xn), n ≥ 1

(3.1)

In general,

|yn − yn+1| =
1

2
|xn−1 − xn + xn − xn+1|, n ≥ 1 (3.2)

So we have,

∞∑

n=0

|yn − yn+1| =
1

2
|x0 − x1|+

1

2
|x0 − x1 + x1 − x2|+

1

2
|x1 − x2 + x2 − x3|+ ∙ ∙ ∙+

1

2
|xn−1 − xn + xn − xn+1|+ . . .

≤
1

2
|x0 − x1|+

1

2
|x0 − x1|+

1

2
|x1 − x2|+

1

2
|x1 − x2|+ ∙ ∙ ∙+

1

2
|xn−1 − xn|+

1

2
|xn−1 − xn|+ . . .

= |x0 − x1|+ |x1 − x2|+ |x2 − x3|+ ∙ ∙ ∙+ |xn−1 − xn|+ . . .

=
∞∑

n=0

|xn − xn+1| (3.3)

i.e.,

∞∑

n=0

|yn − yn+1| ≤
∞∑

n=0

|xn − xn+1| <∞ (3.4)

Moreover,

∣
∣
∣
∣
yn+1

yn

∣
∣
∣
∣ =

∣
∣
∣
∣

1
2
(xn + xn+1)
1
2
(xn−1 + xn)

∣
∣
∣
∣ <

∣
∣
∣
∣
2xn
2xn

∣
∣
∣
∣ = 1, n ≥ 1

i.e.,

∣
∣
∣
∣
yn+1

yn

∣
∣
∣
∣ < 1, n ≥ 1. (3.5)
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This is the case since xn −→ 0 as n −→ ∞ so that xn > xn+1 and xn < xn−1. Hence

yn −→ 0 as n −→∞

Therefore y = Qx ∈ bv0

Direct manipulation shows that

sup
m

∞∑

n=0

∣
∣
∣
∣
∣

m∑

k=0

(qnk − qn−1,k)

∣
∣
∣
∣
∣
= sup(1, 1, 1, . . . ) = 1 (3.6)

So that ‖Q‖(bv0,bv0) = 1

Clearly,

lim
n−→∞

qnk = 0, ∀k ≥ 0

(See matrix (1.8))

Which checks out all conditions in theorem(1.5). Therefore Q ∈ B(bv0, bv0).

Lemma 3.1.1 The most general continuous linear functional on bv0 is given by

f(x) =
∞∑

n=0

xntn (3.7)

Where tn = f(δ
n), t ∈ bs and (δn)∞n=0 is a Schauder basis for bv0 with norm

‖x‖bv0 =
∞∑

k=0

|xk+1 − xk| (3.8)

Moreover bv∗0 is isomorphic to bs via the map

h : bv∗0 −→ bs, h(f) = (t0, t1, t2, . . . ) (3.9)

Proof: See (Okutoyi, 1984) pp 31 - 33.

Theorem 3.1 Let T : bv0 −→ bv0 be given by a matrix A = (ank). Then T ∗ : bv∗0 −→

bv∗0 is also given by a matrix. Moreover the matrix determined by T
∗ is the transposed
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matrix At of A. That is,

T ∗ = At =











a00 a10 a20 . . .

a01 a11 a21 . . .

a02 a12 a22 . . .

. . .











(3.10)

Proof: Since bv0 has AK and bv
∗
0 is isomorphic to bs via the map h : bv

∗
0 −→

bs, h(f) = (t0, t1, t2, . . . ) where tn = f(δ
n), n ≥ 0, f ∈ bv∗0 (see lemma (3.1.1));

we define S = hoT ∗oh−1 : bs −→ bs; that is

S : bs −→ bs,where ‖x‖bs = sup
n≥0

∣
∣
∣
∣
∣

n∑

k=0

xk

∣
∣
∣
∣
∣
. (3.11)

In particular,

h(Pk) = δ
k for k ≥ 0 (3.12)

This is so since,

h(Pk) = (Pk(δ
0), Pk(δ

1), Pk(δ
2), . . . , Pk(δ

n), . . . ) = δk. (3.13)

Thus the kth column (Snk) of S, k ≥ 0 is

S(δk) = h
(
T ∗(h−1δk)

)
= h

(
T ∗(h−1hPk)

)
= h (T ∗(Pk)) (by equation(3.12))

= h(PkoT ) (by definition 1.8.5 of T
∗)

=
(
PkT (δ

0), PkT (δ
1), PkT (δ

2), . . . , PkT (δ
n), . . .

)
(3.14)

i.e., S(δk) = (ak0, ak1, ak2, ak3, . . . , akn, . . . ), where akn = PkT (δ
n).

Thus S which is identified with T ∗ is given by

S = T ∗ = At =














a00 a10 a20 . . .

a01 a11 a21 . . .

a02 a12 a22 . . .

a03 a13 a23 . . .

. . .














: bs −→ bs. (3.15)
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It is also clear that ‖S‖ = ‖T ∗‖, since S = hoT ∗oh−1, h : bv∗0 −→ bs is an isometry

and

‖S‖ ≤ ‖h‖ ‖T ∗‖ ‖h−1‖ = ‖T ∗‖ (3.16)

i.e., ‖S‖ ≤ ‖T ∗‖

But also S = hoT ∗oh−1 implies that T ∗ = h−1oSoh and thus

‖T ∗‖ ≤ ‖h−1‖ ‖S‖ ‖h‖ = ‖S‖ (3.17)

i.e., ‖T ∗‖ ≤ ‖S‖

Hence from (3.16) and (3.17), ‖S‖ = ‖T ∗‖

Corollary 3.1.2 In theorem (3.1) if T : bv0 −→ bv0 is given by the Q matrix, then

T ∗ : bv∗0 −→ bv
∗
0 is given by Q

∗ = Qt, the transposed matrix of Q acting on bs.

Proof: Replace A by Q in theorem (3.1) and the result follows immediately.

Corollary 3.1.3 Q ∈ B(bv0) has no Eigenvalues.

Proof: Since bv0 ⊂ c0, Q ∈ B(c0) has no Eigenvalues, see theorem (2.1).

Lemma 3.1.2 A series
∑
Un(x) is uniformly convergent if there exists a positive

number r less than one such that
∣
∣
∣Un+1(x)Un(x)

∣
∣
∣, for all values of n, provided that U1(x) is

bounded.

Proof: See (Titchmarsh, 1939) pp. 1 - 5

Lemma 3.1.3 Let Zn = Π
n
ν=0(1 −

1
λ(ν+1)

), λ 6= 0, λ ∈ C. Then the partial sums of
∑∞
n=1 Zn are bounded iff Re(

1
λ
) ≥ 1, λ 6= 1.

Proof: See (Okutoyi, 1986) pp. 54 - 57

Theorem 3.2 The Eigenvalues of Q∗ ∈ B(bv∗0), i.e., Q
t ∈ B(bs) are all λ ∈ C

satisfying the inequality |λ− 1
2
| < 1

2
.
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Proof: Suppose Qtx = λx, x ∈ bs, x 6= θ then solving the system for xN in terms

of x0 as in proof of theorem (2.2) obtains xN = 2λ(2λ− 1)N−1(1− 1
λ
)x0, N ≥ 1. Let

ZN = 2λ(2λ−1)N−1(1− 1λ)x0, λ 6= 0, then the partial sums of
∑∞
N=1 ZN are certainly

unbounded, when Re( 1
λ
) = 1.

Using Lemma (3.1.2), we have that the series
∑∞
N−1 ZN is uniformly convergent when

∣
∣
∣
∣
ZN+1

ZN

∣
∣
∣
∣ < 1, N ≥ 1 (3.18)

that is when,

∣
∣
∣
∣
(2λ)N+1(1− 1

2λ
)N(1− 1

λ
)

(2λ)N(1− 1
2λ
)N−1(1− 1

λ
)

∣
∣
∣
∣ < 1 (3.19)

or

∣
∣
∣
∣2λ(1−

1

2λ
)

∣
∣
∣
∣ < 1 (3.20)

or when,

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ <
1

2
. (3.21)

Therefore, the series
∑∞
N=1 ZN is bounded for all λ ∈ C such that

∣
∣λ− 1

2

∣
∣ < 1

2

Alternatively, the partial sums of the series
∑∞
N=1 ZN are bounded whenever

|2λ− 1| < 1; or, 2

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ < 1 (3.22)

i.e., whenever
∣
∣λ− 1

2

∣
∣ < 1

2
∑∞
N=1 ZN are certainly unbounded when Re(

1
λ
) = 1. So that the partial sums of

∑∞
N=1 ZN are bounded whenever λ ∈ C is such that Re(

1
λ
) > 1 or

∣
∣λ− 1

2

∣
∣ < 1

2
.

Theorem 3.3 Let Q : bv0 −→ bv0, then the spectrum σ(Q) of Q ∈ B(bv0) is the set
{

λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2

}

Proof: By virtue of theorem (3.2) and the fact that σ(Q) = σ(Q∗) (See theorem

(1.12)), it is enough to show that (Q−λI)−1 ∈ B(bv0), ∀λ ∈ C such that |λ− 12 | >
1
2
.
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Now, solving the system (Q−λI)(x) = y for x in terms of y as in the proof of theorem

(2.3) obtains the matrix of (Q− λI)−1 which we denote by M . Which is the matrix

given by the formula (2.16). So that columns of M are null when,

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ >
1

2
(3.23)

So that condition (i) of theorem (1.5) is satisfied byM = (mnk), ∀λ ∈ C :
∣
∣λ− 1

2

∣
∣ > 1

2
.

Condition (ii) of the same theorem (1.5) follows from the calculations done below:

Using the formula (2.16) of matrix M in the summations,

∞∑

n=0

∣
∣
∣
∣
∣

N∑

k=0

(mnk −mn−1,k)

∣
∣
∣
∣
∣

(3.24)

We have,

∞∑

n=0

∣
∣
∣
∣
∣

N∑

k=0

(mnk −mn−1,k)

∣
∣
∣
∣
∣
=
∑

1

+
∑

2

+
∑

3

(3.25)

Where

∑

1

=
N∑

n=0

∣
∣
∣
∣
∣

n∑

k=0

mnk −
n−1∑

k=0

mn−1,k

∣
∣
∣
∣
∣
, 0 ≤ n ≤ N (3.26)

∑

2

=

∣
∣
∣
∣
∣

N+1∑

k=0

mN+1,k −mN+1,N+1 −
N∑

k=0

mNk

∣
∣
∣
∣
∣
, n = N + 1 (3.27)

and

∑

3

=
∞∑

n=N+2

∣
∣
∣
∣
∣

N∑

k=0

(mnk −mn−1,k)

∣
∣
∣
∣
∣
, N + 2 ≤ n <∞ (3.28)

Now,

∑

1

=
N∑

n=0

∣
∣
∣
∣
∣

n∑

k=0

mnk −
n−1∑

k=0

mn−1,k

∣
∣
∣
∣
∣

(3.29)

So we have, M = (Q− λI)−1, (Q− λI)(Q− λI)−1 = I. But Mδ =
∑n
k=0mnk, where

δ = (1, 1, 1, . . . )t
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Also (Q− λI)−1(Q− λI) = I, i.e.M(Q− λI)(δ) = δ. Now, since Q(δ) = δ, we have

M(Q− λI)δ = δ , implies that M(δ − λδ) = δ or M(1− λ)δ = δ.

Therefore,

Mδ =
1

1− λ
δ (3.30)

That is,

n∑

k=0

mnk =
1

1− λ
(3.31)

Therefore,

∑

1

= |m00|+
N∑

n=1

∣
∣
∣
∣
1

1− λ
−
1

1− λ

∣
∣
∣
∣ = |m00| =

∣
∣
∣
∣
1

1− λ

∣
∣
∣
∣ (3.32)

∑

2

=

∣
∣
∣
∣
∣

∞∑

k=0

mN+1,k −mN+1,N+1 −
N∑

k=0

mN,k

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
1

1− λ
−mN+1,N+1 −

1

1− λ

∣
∣
∣
∣ = |−mN+1,N+1|

=

∣
∣
∣
∣

1

λ(1− 1
2λ
)

∣
∣
∣
∣ (3.33)

∑

3

=
∞∑

n=N+2

∣
∣
∣
∣
∣

N∑

k=0

(mnk −mn−1,k)

∣
∣
∣
∣
∣

(3.34)

=
∞∑

n=N+2

∣
∣
∣
∣
∣

N∑

k=0

(
2λ

2nλn+1(1− 1
2λ
)n
+

−1
2n−kλn−k+1(1− 1

2λ
)n−k+1

+
1

2n−1−kλn−k(1− 1
2λ
)n−k

)∣∣
∣
∣
∣

But,
∣
∣
∣
∣
∣

2λ

2nλn+1
(
1− 1

2λ

)n

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣

2λ

n2
n
π
i=1

(
1− 1

iλ

)

∣
∣
∣
∣
∣
∣
≤
2 |λ|nα

n2O (1)
(3.35)

(by (Reade, 1985), page 267; where α = Re
(
1
λ

)
)

Also,
∣
∣
∣
∣
∣

−1

2n−kλn−k+1
(
1− 1

2λ

)n−k+1

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣

−1

n2
n
π
i=1

(
1− 1

iλ

)

∣
∣
∣
∣
∣
∣
, n ≥ k + 1

≤
nα

n2O (1)
(3.36)
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Similarly,

∣
∣
∣
∣
∣

−1

2n−k−1λn−k
(
1− 1

2λ

)n−k

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣

−1

n2
n
π
i=1

(
1− 1

iλ

)

∣
∣
∣
∣
∣
∣
≤

1

n2O(1)
nα

=
nα

n2O (1)
(3.37)

Adding the inequalities(3.35),(3.36),and(3.37) gives

2 |λ|nα

n2O (1)
+

nα

n2O (1)
+

nα

n2O (1)
= 2 (|λ|+ 1)

nα

n2O (1)
(3.38)

so that
∣
∣
∣
∣
∣

N∑

k=0

(
2λ

2nλn+1
(
1− 1

2λ

)n −
1

2n−kλn−k+1
(
1− 1

2λ

)n−k+1 +
1

2n−1−kλn−k
(
1− 1

2λ

)n−k

)∣∣
∣
∣
∣

≤
N∑

k=0

2 (|λ|+ 1)nα

n2O (1)
= N

2 (|λ|+ 1)nα

n2O (1)
(3.39)

Hence,

∑

3
≤

∞∑

n=N+2

N2 (|λ|+ 1)nα

n2O (1)
=
KN2 (|λ|+ 1)Nα

N2O (1)
, if α < 2

=
2K (|λ|+ 1)Nα−1

O (1)
, K ∈ R, K > 0. (3.40)

So that,

sup
N≥0

{∣
∣
∣
∣
1

1− λ

∣
∣
∣
∣+

∣
∣
∣
∣
∣

1

λ
(
1− 1

2λ

)

∣
∣
∣
∣
∣
+
2K (|λ|+ 1)Nα−1

O (1)

}

(3.41)

exists for all α ∈ C , such that α − 1 < 0 or α < 1 . Or equivalently λ ∈ C such

that
∣
∣λ− 1

2

∣
∣ > 1

2
. Therefore, M = (Q− λI)−1 ∈ B (bv0), for all λ ∈ C such that

∣
∣λ− 1

2

∣
∣ > 1

2
. And so M = (Q− λI)−1 /∈ B (bv0) for λ ∈ C such that

∣
∣λ− 1

2

∣
∣ ≤ 1

2
.

3.2 The Spectrum of Q ∈ B(bv)

In this section the spectrum of Q ∈ B(bv) is obtained.
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Theorem 3.4 Let T : bv −→ bv be given by a matrix A = (ank), then T ∗ : bv∗ −→

bv∗ is also given by a matrix. Moreover the matrix of T ∗ is

T ∗ =














χ̄ ν0 − χ̄ ν1 − χ̄ ν2 − χ̄ . . .

a0 a00 − a0 a10 − a0 a20 − a0 . . .

a1 a01 − a1 a11 − a1 a21 − a1 . . .

a2 a02 − a2 a12 − a2 a22 − a2 . . .

. . .














(3.42)

Where

χ̄ = lim
n−→∞

∞∑

ν=0

anν , ak = lim
n−→∞

ank (3.43)

for k ≥ 0, νn =
∑∞
ν=0 anν , n ≥ 0 and akn = PkT (δ

n).

Furthermore, bv∗ is isomorphic to C⊕ bs.

Proof: See (Okutoyi, 1986) pp. 62 - 63 as well as (Okutoyi, 1984).

Corollary 3.2.1 Let Q : bv −→ bv, then Q∗ : bv∗ −→ bv∗ and

‖Q‖(bv,bv) = ‖Q‖(bv∗,bv∗) = 1. So that Q is bounded over bv. Moreover,

Q∗ =














1 0 0 0 0 . . .

0 1 1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .














Proof: We merely choose

A = Q =














1 0 0 0 . . .

1
2

1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

. . .














(3.44)
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in theorem (3.4). Using the Q matrix , we have

χ̄ = lim
n−→∞

(1, 1, 1, . . . )t = 1, (3.45)

ak = lim
n−→∞

= 0, ∀k ≥ 0. (3.46)

And

νn =
∞∑

ν=0

anν = 1, ∀n ≥ 0 (3.47)

Also,

(akn) =











a00 a10 a20 . . .

a01 a11 a21 . . .

a02 a12 a22 . . .

. . .











(3.48)

=











1 1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

. . .











(3.49)

Substituting these values in the matrix (3.42) of T ∗ gives the matrix of Q∗ which acts

on C⊕ bs. That is Q∗ : C⊕ bs −→ C⊕ bs. Moreover

‖Q‖(bv,bv) = ‖Q‖(bv0,bv0) = ‖Q
∗‖(bv∗,bv∗) = 1. (3.50)

Corollary 3.2.2 The only Eigenvalue of Q ∈ B(bv) is λ = 1

Proof: The proof follows from theorem (2.5) since bv ⊂ c and both bv and c are

BK-spaces with 4+ as their Schauder basis. See definitions (1.5.4) and (1.5.6).

Theorem 3.5 The Eigenvalues of Q∗ ∈ B(bv∗) = B(C⊕ bs) are all λ ∈ C satisfying

the inequality
∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ <
1

2
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Proof: Suppose Q∗x = λx, x ∈ C⊕ bs, x 6= θ. Then














1 0 0 0 . . .

0 1 1
2
0 . . .

0 0 1
2

1
2
. . .

0 0 0 1
2
. . .

. . . . . .






























x0

x1

x2

x3

x4
...

















= λ














x0

x1

x2

x3
...














(3.51)

gives the system

x0 = λx0

x1 + 1
2
x2 = λx1

1
2
x2 + 1

2
x3 = λx2

1
2
x3 + 1

2
x4 = λx3

1
2
x4 + 1

2
x5 = λx4

. . .

(3.52)

Solving the above system, we obtain

x0 = 0 or λ = 1

x2 = 2λ(1− 1
λ
)x1

x3 = (2λ)2(1− 1
λ
)(1− 1

2λ
)x1

x4 = (2λ)3(1− 1
λ
)(1− 1

2λ
)2x1

x5 = (2λ)4(1− 1
λ
)(1− 1

2λ
)3x1

. . .

(3.53)

In general, we have

xN = (2λ)
N−1(1−

1

2λ
)N−2(1−

1

λ
)x1, N ≥ 2 (3.54)

Hence the series
∑∞
N=2 xN is bounded, i.e., its partial sums are bounded iff Re(

1
λ
) > 1

or |λ− 1
2
| < 1

2
(see the proof of theorem (3.2)).
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Theorem 3.6 Let Q : bv −→ bv, then the spectrum σ(Q) of Q comprises the set
{

λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2

}

Proof: By virtue of theorem (3.5) and the fact that σ(Q) = σ(Q∗), it is enough to

show that (Q− λI)−1 ∈ B(bv) for all λ ∈ C such that
∣
∣λ− 1

2

∣
∣ > 1

2
.

Solving system (Q− λI)(x) = y for x in terms of y as in the proof of theorem (2.3),

we obtain the matrix of (Q − λI)−1. See formula (2.16). Condition (i) of theorem

(1.6) is satisfied for all λ ∈ C such that Re( 1
λ
) < 1 or

∣
∣λ− 1

2

∣
∣ > 1

2
(see the proof

of theorem (3.3). Condition (ii) of the same theorem (1.6) is automatically satisfied

since

∞∑

k=0

mnk =
n∑

k=0

mnk =
1

1− λ
(3.55)

for all n ≥ 0. See the proof of theorem (3.3). So that

n∑

k=0

mnk <∞, n ≥ 0 provided λ 6= 1. (3.56)

Therefore M ∈ B(bv) for all λ ∈ C such that
∣
∣λ− 1

2

∣
∣ > 1

2
. Which implies that the

spectrum σ(Q) of Q on bv is given by

σ(Q) =

{

λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2

}

Hence Q ∈ B(bv0) and B(bv) has the same spectrum despite having different sets of

eigenvalues. And this ends the chapter.In the following chapter the fine spectrum of

Q on c is constructed.

39



Chapter 4

The Fine Spectrum of The Nörlund

Q Matrix as an Operator On c

4.1 Introduction

In this chapter we derive the fine spectrum of the Q matrix acting as an operator on

c - the space of convergence sequences. In so doing a state diagram is employed. The

state diagram is found in (Goldberg, 1966) page 61 or(Taylor, 1958) page 237.

For this purpose, we use the following notation which is also found in (Goldberg,

1966) page 58. The diagram is a book-keeping device for keeping track of some

theorems concerning the range and inverse of T as well as T ∗.

If T ∈ B(X), where X is a Banach space, we have three possibilities for R(T ), the

range of T :

I. R(T ) = X

II. R(T ) 6= X, but R(T ) = X

III. R(T ) 6= X

and three possibilities for T−1:
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1. T−1 exists and is continuous

2. T−1 exists and is discontinuous

3. T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are cre-

ated. These are I1, I2, I3, II1, II2, II3, III1, III2, III3. If an operator is in state

III2, for example, then R(T ) 6= X and T−1 exists but is discontinuous. We then

write T ∈ III2.

Similarly, we write T ∈ 2 to indicate that T−1 exists and is discontinuous or T ∈ III

when R(T ) 6= X.

If λ ∈ C is such that λI − T ∈ I1 or λI − T ∈ II1, then λ is in the resolvent set of T .

This set of values is denoted by ρ(T ). All scalar values of λ not in ρ(T ) comprise the

spectrum of T . If λI − T is in state III1 (say), then we shall write λ ∈ III1σ(T ).

4.2 The Fine Spectrum of Q ∈ B(c)

Since ||Q||c = 1( see corollary (2.2.1)), λ ∈ ρ(Q) if |λ| > 1. We now obtain an

enlargement of ρ(Q) in the following theorem.

Theorem 4.1 If Re( 1
λ
) < 1, then λ ∈ ρ(Q).

Proof: Let λ ∈ C be such that Re( 1
λ
) < 1. Since λ 6= 1, 1

2
;λI − Q is a triangle and

therefore as an operator is one - one. We now need to establish that λI −Q is onto.

We take y = (y1, y2, y3, . . . ), an arbitrary element in c and let

(λI −Q)(x) = y (4.1)
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Solving equation (4.1) for x in terms of y as in the proof of theorem (2.3), we obtain

the matrix of (λI −Q)−1 = B. So that

B =















1
λ(1− 1

λ
)

0 0 0 . . .

1
2λ2(1− 1

2λ
)(1− 1

λ
)

1
λ(1− 1

2λ
)

0 0 . . .

1
22λ3(1− 1

2λ
)2(1− 1

λ
)

1
2λ2(1− 1

2λ
)2

1
λ(1− 1

2λ
)

0 . . .

1
23λ4(1− 1

2λ
)3(1− 1

λ
)

1
22λ3(1− 1

2λ
)3

1
2λ2(1− 1

2λ
)2

1
λ(1− 1

2λ
)
. . .

. . .















(4.2)

Note that: Since B is a triangle and the entries in the leading diagonal are none zero,

B−1 exists. Moreover

(λI −Q) = B−1 =

















λ− 1 0 0 0 . . .

−1
2
λ− 1

2
0 0 . . .

0 −1
2
λ− 1

2
0 . . .

0 0 −1
2
λ− 1

2
. . .

0 0 0 −1
2
. . .

. . .

















(4.3)

calculations show that

BB−1 = B−1B = I (4.4)

Matrix B can be compactly represented by the formula

B = (bnk) =






1
2nλn+1(1− 1

2λ
)n(1− 1

λ
)
, k = 0

1
2n−kλn−k+1(1− 1

2λ
)n−k+1

, 1 ≤ k ≤ n

0, k > n

(4.5)

We now check that B ∈ B(c), i.e., we checkout the conditions stated in theorem (1.2).

From the proof of theorem (3.3) in chapter 3, we see that

∞∑

k=0

bnk =
1

λ− 1
for each n = 0, 1, 2, . . .
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see equality (3.31).

It is trivial that

∞∑

k=0

b0,k =
1

λ− 1
(4.6)

Hence

lim
n

∞∑

k=0

bnk = lim
n

1

λ− 1
(4.7)

exists for all λ ∈ C such that λ 6= 1. Which establishes condition (ii) of theorem

(1.2).

Since by hypothesis Re( 1
λ
) < 1, then

∣
∣
∣
∣1−

1

λ

∣
∣
∣
∣ ≥ Re(1−

1

λ
) = 1−Re(

1

λ
) > 0 (4.8)

Let β = 1−Re( 1
λ
), then

∣
∣
∣
∣1−

1

nλ

∣
∣
∣
∣ ≥
β + (n− 1)

n
, n = 1, 2, 3, . . . (4.9)

And this implies that

∣
∣
∣
∣1−

1

λ

∣
∣
∣
∣ ≥ β and

∣
∣
∣
∣1−

1

2λ

∣
∣
∣
∣ ≥
β + 1

2
(4.10)

Using formula (4.5) for the matrix B and relation (4.10), we have for k = 0;

∣
∣
∣
∣

1

2nλn+1(1− 1
2λ
)n(1− 1

λ
)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

1

2nλn+1(β+1
2
)nβ

∣
∣
∣
∣
∣

(4.11)

But

lim
n−→∞

1

2nλn+1(β+1
2
)nβ
= 0 (4.12)

Which implies that,

lim
n−→∞

1

2nλn+1(1− 1
2λ
)n(1− 1

λ
)
= 0 (4.13)
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Therefore, limn−→∞ bnk = 0, k = 0

For 1 ≤ k ≤ n, we have,

bnk =
1

2n−kλn−k+1(1− 1
2λ
)n−k+1

(4.14)

and

∣
∣
∣
∣

1

2n−kλn−k+1(1− 1
2λ
)n−k+1

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

1

2n−kλn−k+1(β+1
2
)n−k+1

∣
∣
∣
∣
∣

(4.15)

But

lim
n−→∞

1

2n−kλn−k+1(β+1
2
)n−k+1

= 0 for all k = 1, 2, . . . (4.16)

Which implies that

lim
n−→∞

1

2n−kλn−k+1(1− 1
2λ
)n−k+1

= 0 (4.17)

for all k = 1, 2, 3, . . .

So that limn−→∞ bnk = 0, ∀k = 0, 1, 2, . . . provided Re( 1λ) < 1. Which establishes

condition (i) of theorem (1.2).

Now, summing absolutely along the nth row of the matrix B, we get

∞∑

k=0

|bnk| =

∣
∣
∣
∣

1

2nλn+1(1− 1
2λ
)n(1− 1

λ
)

∣
∣
∣
∣+

∞∑

k=1

∣
∣
∣
∣

1

2n−kλn−k+1(1− 1
2λ
)n−k+1

∣
∣
∣
∣ (4.18)

≤

∣
∣
∣
∣
∣

1

2nλn+1(β+1
2
)nβ

∣
∣
∣
∣
∣
+

∞∑

k=1

∣
∣
∣
∣
∣

1

2n−kλn−k+1(β+1
2
)n−k+1

∣
∣
∣
∣
∣

(4.19)

=
1

β(β + 1)n

∣
∣
∣
∣
1

λn+1

∣
∣
∣
∣+

n∑

k=1

∣
∣
∣
∣

2

λn−k+1(β + 1)n−k+1

∣
∣
∣
∣ = εn, say (4.20)

i.e.

∞∑

k=0

|bnk| =
n∑

k=0

|bnk| ≤ εn (4.21)
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It is clear from equality (4.20) that when n is large enough (εn) is a decreasing

sequence of positive numbers which is bounded above. So that

sup
n

n∑

k=0

|bnk| ≤ K, for some K ∈ R such that K > 0. (4.22)

Hence condition (iii) of theorem (1.2) is satisfied. Therefore, the matrix B = (Iλ −

Q)−1 is conservative for all λ ∈ C such that Re( 1
λ
) < 1.

And this shows that B is surjective. Therefore (Iλ − Q) ∈ I. Since c is a Banach

space, then by the Bounded Inverse Theorem, see (Taylor, 1958), page 234,theorem

4.7B or(Limaye, 1996), pp.182 - 183; state I2 is impossible. Upon consulting the state

diagram, (Taylor, 1958) pp.235 - 238, we see that λI −Q ∈ I1. That is λ ∈ ρ(Q).

Theorem 4.2 If Re( 1
λ
) > 1, λ 6= 1

2
then λ ∈ III1σ(Q).

Proof: The matrix Iλ−Q is a triangle and therefore as an operator, Iλ−Q is one-

one. We now consider the adjoint operator λI−Q∗ such that (λI−Q∗)(x) = θ. Since

Q∗ for Q on c is given by a matrix (2.24), which acts on `1, we have that














(λ− 1) 0 0 0 . . .

0 (λ− 1) −1
2

0 . . .

0 0 (λ− 1
2
) −1

2
. . .

0 0 0 (λ− 1
2
) . . .

. . .



























x0

x1

x2

x3
...














=














0

0

0

0
...














(4.23)

From which, we have

(λ− 1)x0 = 0 =⇒ x0 = 0 (4.24)

(λ− 1)x1 −
1

2
x2 = 0 =⇒ x2 = 2λ(1−

1

λ
)x1 (4.25)

Similarly,

x3 = (2λ)
2(1−

1

2λ
)(1−

1

λ
)x1 (4.26)
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x4 = (2λ)
3(1−

1

2λ
)2(1−

1

λ
)x1 (4.27)

. . .

xn = (2λ)
n−1(1−

1

2λ
)n−2(1−

1

λ
)x1, (4.28)

n = 2, 3, 4 . . .

Series,
∞∑

n=2

(2λ)n−1(1−
1

2λ
)n−2(1−

1

λ
)x1 (4.29)

Converges absolutely for x1 6= 0, when

lim
n−→∞

∣
∣
∣
∣
xn+1

xn

∣
∣
∣
∣ = limn−→∞

∣
∣
∣
∣
(2λ)n(1− 1

2λ
)n−1(1− 1

λ
)x1

(2λ)n−1(1− 1
2λ
)n−2(1− 1

λ
)x1

∣
∣
∣
∣ (4.30)

= lim
n−→∞

|2λ(1−
1

2λ
)| < 1 (4.31)

i.e. when |λ− 1
2
| < 1

2
.

But Re( 1
λ
) > 1 iff |λ− 1

2
| < 1

2
, (Wenger, 1975) page 706. Hence x1 need not be zero

for x to be in `1.

Therefore λI − Q∗ is not one to one and all these implies that R(λI − Q) is not

dense in c, (Reade, 1985) page 265. Upon consulting the state diagram, we see that

λI−Q ∈ III1∪ III2. To prove that λI−Q ∈ III1, it is enough to show that λI−Q∗

is surjective, see (Taylor, 1958) pp.234 - 235. To this end, we set (λI − Q∗)x = y,

where y is an arbitrary element in `1

That is,










λ− 1 0 0 0 . . .

0 λ− 1 −1
2

0 . . .

0 0 (λ− 1
2
) −1

2
. . .

. . .





















x0

x1

x2
...











=











y0

y1

y2
...











(4.32)
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So that,

(λ− 1)x0 = y0 (4.33)

(λ− 1)x1 −
1

2
x2 = y1 (4.34)

(λ−
1

2
)x2 −

1

2
x3 = y2 (4.35)

(λ−
1

2
)x3 −

1

2
x4 = y3 (4.36)

. . .

In general,

(λ−
1

2
)xn −

1

2
xn+1 = yn, n = 2, 3, 4, . . . (4.37)

If we choose x1 = 0 and solve for the remaining x0, x2, x3, . . . , in terms of y0, y1, y2, y3, . . . .

We obtain,

x0 =
1

λ− 1
y0

x2 = −2y1

x3 = −22λ(1−
1

2λ
)y1 − 2y2

x4 = −23λ2(1−
1

2λ
)2y1 − 2

2λ(1−
1

2λ
)y2 − 2y3

x5 = −24λ3(1−
1

2λ
)3y1 − 2

3λ2(1−
1

2λ
)2y2 − 2

2λ(1−
1

2λ
)y3 − 2y4 (4.38)

x6 = −25λ4(1−
1

2λ
)4y1 − 2

4λ3(1−
1

2λ
)3y2 − 2

3λ2(1−
1

2λ
)2y3 − 2

2λ(1−
1

2λ
)y4 − 2y5

. . .

And in general for n = 3, 4, 5, . . .

xn = −2n−1λn−2(1−
1

2λ
)n−2y1 − 2

n−2λn−3(1−
1

2λ
)n−3y2

− 2n−3λn−4(1−
1

2λ
)n−4y3 − ∙ ∙ ∙ − 2

2λ(1−
1

2λ
)yn−2 − 2yn−1 (4.39)
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These equations define a matrix transformation. We denote the matrix by

H = (hnk) =




















1
λ(1− 1

λ
)

0 0 0 0 . . .

0 0 0 0 0 . . .

0 −2 0 0 0 . . .

0 −22λ(1− 1
2λ
) −2 0 0 . . .

0 −23λ2(1− 1
2λ
)2 −22λ(1− 1

2λ
) −2 0 . . .

0 −24λ3(1− 1
2λ
)3 −23λ2(1− 1

2λ
)2 −22λ(1− 1

2λ
) −2 . . .

. . .




















(4.40)

matrix H = (hnk) may be given by the formula

H = (hnk) =






1
λ(1− 1

λ
)
, k = n = 0

−2n−kλn−k−1(1− 1
2λ
)n−k−1, 1 ≤ k ≤ n

0 elsewhere

(4.41)

Note: By definition

λs−i = (1−
1

2λ
)s−i = 0, if s < i (4.42)

Obviously,

∞∑

n=0

|hnk| =

∣
∣
∣
∣

1

λ(1− 1
λ
)

∣
∣
∣
∣ <∞ (4.43)

when k = 0,provided λ 6= 1

∞∑

n=0

|hnk| =
∞∑

n=0

∣
∣
∣
∣
∣
−2n−kλn−k−1

(

1−
1

2λ

)n−k−1
∣
∣
∣
∣
∣
<∞ (4.44)

for k = 1, 2 . . . provided,

lim
n−→∞

∣
∣
∣
∣
(n+ 1)thterm

nthterm

∣
∣
∣
∣ < 1 (4.45)

That is, provided,

lim
n−→∞

∣
∣
∣
∣
∣
−2n−k+1λn−k

(
1− 1

2λ

)n−k

−2n−kλn−k−1
(
1− 1

2λ

)n−k−1

∣
∣
∣
∣
∣
< 1 (4.46)
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So that
∣
∣2λ
(
1− 1

2λ

)∣∣ < 1 or
∣
∣λ− 1

2

∣
∣ < 1

2
or equivalently, provided Re( 1

λ
) > 1.

Which establishes condition (i) of theorem (1.4). Now summing absolutely along the

columns, we have that when k = 0.

∞∑

n=0

|hnk| =
∞∑

n=0

1

λ(1− 1
λ
)
=

∣
∣
∣
∣

1

λ(1− 1
λ
)

∣
∣
∣
∣ <∞, (4.47)

provided, Re(λ) 6= 1. For k = 1, 2, 3, . . . , we have

∞∑

n=0

|hnk| =
∞∑

n=k+1

∣
∣
∣
∣
∣
−2n−kλn−k−1

(

1−
1

2λ

)n−k−1
∣
∣
∣
∣
∣

(4.48)

=
∞∑

n=k+1

∣
∣−2(2λ− 1)n−k−1

∣
∣ (4.49)

By hypothesis Re( 1
λ
− 1) > 0 or

∣
∣λ− 1

2

∣
∣ < 1

2
=⇒ |2λ− 1| < 1.

Hence there exists a β ∈ R with β > 0 such that

|2λ− 1| < β < 1 (4.50)

This implies for series (4.49) that

∞∑

n=0

|hnk| = 2
∞∑

n=k+1

|2λ− 1|n−k−1 ≤ 2
∞∑

n=k+1

βn−k−1

= 2(1 + β + β2 + β3 + . . . ) =
2

1− β
(4.51)

Since 0 < β < 1. i.e.,

∞∑

n=0

|hnk| ≤
2

1− β
, ∀k = 1, 2, . . . (4.52)

Let M = max.
{∣
∣ 1
λ−1

∣
∣ , 2
1−β

}

Then,

∞∑

n=0

|hnk| ≤M, independent of k. (4.53)

This establishes condition (ii) of theorem (1.4) for matrix H = (hnk). All these implies

that x ∈ `1. Therefore λI −Q∗ is onto and therefore λI −Q has a bounded inverse.

See (Taylor, 1958) pp. 233 - 234. So that λI −Q ∈ III1.
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Theorem 4.3 If λ = 1
2
, then λ ∈ III1σ(Q)

Proof: Let x = (x0, x1, x2, . . . ) ∈ c and consider ( 12I −Q)(x) = θ.

This implies that,

−
1

2
x0 = 0

−
1

2
x1 = 0

−
1

2
x2 = 0 (4.54)

. . .

and in general,

−
1

2
xn = 0, ∀n = 0, 1, 2, . . . (4.55)

That is x = θ. Hence the operator 1
2
I − Q is one to one. So that 1

2
I − Q ∈ 1 ∪ 2.

Turning to the conjugate operator 1
2
I −Q∗, we set (1

2
I −Q∗)(x) = θ, x ∈ `1. Where

Q∗ has the matrix (2.24). This implies that,

−
1

2
x0 = 0

−
1

2
x1 −

1

2
x2 = 0

−
1

2
x3 = 0

−
1

2
x4 = 0 (4.56)

. . .

In general,

−
1

2
xn = 0, n = 3, 4, 5, . . . (4.57)
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Which implies that xn = 0, n = 0, 3, 4, 5, . . . or x1 = −x2. And these implies that

either x1 = x2 = 0 or x1 = −a when x2 = a, a ∈ C or x1 = b, when x2 = −b, b ∈ C.

All these implies that non-zero sequences are mapped into the zero sequence. Thus

the operator 1
2
I −Q∗ has a non trivial kernel. And this implies that R(1

2
I −Q) 6= X.

See (Reade, 1985) page 265. Thus 1
2
I − Q ∈ III . To obtain the conclusion, it is

sufficient to prove that 1
2
I − Q∗ is surjective. Accordingly, let y = (y0, y1, y2, . . . ) be

an arbitrary element in `1. If x = (x0, x1, x2, . . . ) exists such that (
1
2
I −Q∗)(x) = y,

then as in system (4.57), we have,

−
1

2
x0 = y0

−
1

2
x1 −

1

2
x2 = y1

−
1

2
x3 = y2

−
1

2
x4 = y3 (4.58)

. . .

Solving the above system for x in terms of y we obtain

x0 = −2y0

x1 = −x2 − 2y1

x3 = −2y2

x4 = −2y3 (4.59)

. . .

Choosing x1 = 0, we have

x0 = −2y0

x2 = −2y1 (4.60)

x3 = −2y2

. . .

So that x ∈ `1. Therefore 12I −Q
∗ is onto. Thus 1

2
I −Q ∈ 1. Hence 1

2
I −Q ∈ III1.
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Theorem 4.4 If Re( 1
λ
) = 1, λ 6= 1, then λ ∈ II2σ(Q)

Proof: Let λ be a complex number such that Re( 1
λ
) = 1, λ 6= 1. Since λI − Q is a

triangle, it is one-one and so λI −Q ∈ 1∪ 2. We must now consider the conjugate or

the adjoint operator λI −Q∗. Setting (λI −Q∗)x = θ and solving for xn in terms of

x1, n = 2, 3, 4, . . . as in the proof of theorem (4.2) we find that:

x0 = 0 (4.61)

xn = (2λ)
n−1(1−

1

2λ
)n−2(1−

1

λ
)x1, n = 2, 3, 4, . . . (4.62)

It follows that ,

∞∑

n=0

|xn| = x0 + |x1|+
∞∑

n=2

|xn|

= |x1|+
∞∑

n=2

∣
∣
∣
∣
∣
(2λ)n−1

(

1−
1

2λ

)n−2(

1−
1

λ

)

x1

∣
∣
∣
∣
∣
=∞ (4.63)

when Re( 1
λ
) = 1, unless x = θ. Hence the kernel of the operator λI−Q∗ is trivial.

Which implies that R(λI −Q) = X.

Thus λI −Q ∈ II. On consulting the state diagram, we have that λI −Q ∈ I1 ∪ II2.

To check the surjectivity of λI −Q∗, we set (λI −Q∗)x = y, where y is an arbitrary

element in `1. Now solving the equation for x in terms of y as in the proof of theorem

(4.2) gives, on setting x1 = 0, the system

x0 =
1

λ(1− 1
λ
)
y0

x2 = −2y1

x3 = −22λ(1−
1

2λ
)y1 − 2y2

x4 = −23λ2(1−
1

2λ
)2y1 − 2

2λ(1−
1

2λ
)y2 − 2y3 . . .

xn = −2n−1λn−2
(

1−
1

2λ

)n−2
y1 − 2

n−2λn−3
(

1−
1

2λ

)n−3
y2 (4.64)

− 2n−3λn−4
(

1−
1

2λ

)n−4
y3 − ∙ ∙ ∙ − 2

2λ

(

1−
1

2λ

)

yn−2 − 2yn−1, n ≥ 2.
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It is clear from equation 4.41 that if Re( 1
λ
) = 1, then x /∈ `1. This implies that

λI −Q∗ is not surjective. On consulting the state diagram, state I1 is ruled out.

So that λI −Q ∈ II2. Hence the result.

Theorem 4.5 1 ∈ III3σ(Q)

Proof: Let x = (x0, x1, x3, . . . ) ∈ c.

Consider the matrix equation

(I −Q)(x) = θ (4.65)

That is,














0 0 0 0 . . .

−1
2

1
2

0 0 . . .

0 −1
2

1
2
0 . . .

0 0 −1
2

1
2
. . .

. . .



























x0

x1

x2

x3
...














=














0

0

0

0
...














(4.66)

Which leads to the system,

−
1

2
x0 +

1

2
x1 = 0 (4.67)

−
1

2
x1 +

1

2
x2 = 0 (4.68)

−
1

2
x2 +

1

2
x3 = 0 (4.69)

. . .

This implies that,
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x = k











1

1

1
...











, (4.70)

k is a scalar constant.

Thus non-zero vectors are mapped onto the zero vector. So that I−Q is not one-one.

And I −Q ∈ 3. Considering the adjoint operator I −Q∗, we set (I −Q∗)x = θ which

leads to the equation













0 0 0 0 0 . . .

0 0 −1
2
0 0 . . .

0 0 1
2
−1
2
0 . . .

0 0 0 1
2
−1
2
. . .

. . .



























x0

x1

x2

x3

. . .














=














0

0

0

0
...














(4.71)

Which implies that,

−
1

2
x2 = 0 (4.72)

1

2
x2 −

1

2
x3 = 0 (4.73)

1

2
x3 −

1

2
x4 = 0 (4.74)

. . .

So that,

x =














a0

a1

0

0
...














(4.75)
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where x0 = a0, x1 = a1, a0, a1 some scalar constants. Hence I −Q∗ is not one-one. So

that I −Q∗ has non-trivial kernel, which leads to the conclusion that

I −Q 6= X (4.76)

Therefore I − Q ∈ III . Upon consulting the state diagram, we have that 1 ∈

III3σ(Q). The fine spectrum of the operator Q on c can be summarized by means of

the circle centered at the point ( 1
2
, 0) of radius 1

2
.

The points in the interior of the circle make up III1σ(Q). Those on the circum-

ference of the circle except the point (1, 0) form II2σ(Q).

The set III3σ(Q) = {1} and ρ(Q) consists of all points exterior to the circle. Hence

the fine spectrum of Q ∈ B(c) is constructed. In the next chapter we construct the

spectrum of the almost Nörlund Q matrix on c0 and c.

In the next chapter the spectrum of almost Norlund Q operator on c0 and c is deter-

mined.
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Chapter 5

The Spectrum of almost Nörlund

Q operator on c0, c

In this chapter we construct the spectrum of an almost Nörlund Qmatrix as a bounded

operator on c0 and c spaces. The chapter is divided into two sections. Section one

deals with the spectrum of an almost Nörlund Q matrix on c0. Where as section two

deals with its spectrum on c.

5.1 The Spectrum of almost triangular Q1 matrix

on c0

In this section we determine the spectrum of Q1∈B(c0). We first of all give examples

of almost triangular matrices. See definition (1.3.4) of almost triangular matrices.

For example, the matrix A such that,

A = (ank) =














a00 a01 a02 0 0 0 . . .

a10 a11 a12 a13 0 0 . . .

a20 a21 a22 a23 a24 0 . . .

a30 a31 a32 a33 a34 a35 . . .

. . .














(5.1)
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where m = 2 is an almost triangular infinite matrix.

Remark 5.1.1 Some concrete examples of almost triangular matrices are:

A = (ank) =














1 1 0 0 0 . . .

1
2

1
2

1
2
0 0 . . .

1
3

1
3

1
3

1
3
0 . . .

1
4

1
4

1
4

1
4

1
4
. . .

. . .














(5.2)

A = (ank) =














1 0 0 0 0 . . .

0 1
2

1
2
0 0 . . .

0 1
3

1
3

1
3
0 . . .

0 1
4

1
4

1
4

1
4
. . .

. . .














(5.3)

A = (ank) =














1 0 0 0 0 . . .

1
2

1
2

1
2
0 0 . . .

0 1
2

1
2

1
2
0 . . .

0 0 1
2

1
2

1
2
. . .

. . .














(5.4)

A = (ank) =














1 0 0 0 0 . . .

0 1
2

1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .














(5.5)
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Matrix (5.5) is the matrix of our interest in this chapter. We call it almost Nörlund

Q matrix and denote it by Q1. That is

Q1 = (q
1
nk) =














1 0 0 0 0 . . .

0 1
2

1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .














Corollary 5.1.1 Q1 ∈ B(c0)

This follows from theorem (1.3) and matrix (5.5). Since

lim
n−→∞

q1nk = 0, for each k ≥ 0 (5.6)

Also

‖Q1‖ = sup
n

∞∑

k=0

q1nk (5.7)

= sup
n
{1, 1, 1, . . . } (5.8)

= 1 (5.9)

By theorem(1.7)

‖Q∗1‖ = ‖Q1‖ = 1 (5.10)

Corollary 5.1.2 Let Q1 : c0 −→ c0, then Q∗1 ∈ B(`1), where Q
∗
1 is the transposed

matrix of Q1

Proof: All these clearly follow from lemmas (2.1.1) and (2.1.2) with T replaced by

Q1.

Theorem 5.1 Q1 ∈ B(c0) has the set of eigenvalues given as

{λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ <
1

2
}
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Proof : Suppose Q1x = λx, λ ∈ C and x ∈ c0 is such that x 6= θ. Then equation













1 0 0 0 0 . . .

0 1
2

1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .



























x0

x1

x2

x3
...














= λ














x0

x1

x2

x3
...














(5.11)

implies that,

x0 = λx0 (5.12)

1

2
x1 +

1

2
x2 = λx1 (5.13)

1

2
x2 +

1

2
x3 = λx2 (5.14)

. . .

1

2
(xn + xn+1) = λxn, n ≥ 1 (5.15)

On solving the system, we have that if x0 is the first non-zero entry of x, then λ = 1.

But λ = 1 =⇒ x1 = x2 = x3 = ∙ ∙ ∙ = xn = xn+1 = . . . , n ≥ 1

So that x9 0. Hence λ = 1 is not an eigenvalue of Q1 ∈ B(c0).

If x1 is the first non-zero entry of x, then solving the system for xn in terms of

x1, n ≥ 2; gives,

x2 = 2(λ−
1

2
)x1 (5.16)

x3 = 2
2(λ−

1

2
)2x1 (5.17)

x4 = 2
3(λ−

1

2
)3x1 (5.18)
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. . .

In general,xn = 2
n−1(λ− 1

2
)n−1x1, n ≥ 2. For xn −→ 0 as n −→∞, we must have

∣
∣
∣
∣
xn+1

xn

∣
∣
∣
∣ < 1, ∀n ≥ 1 (5.19)

i.e,

∣
∣
∣
∣
2n(λ− 1

2
)nx1

2n−1(λ− 1
2
)n−1x1

∣
∣
∣
∣ < 1, ∀n ≥ 1 (5.20)

Which implies that,
∣
∣
∣
∣2(λ−

1

2
)

∣
∣
∣
∣ < 1 (5.21)

or

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ <
1

2
(5.22)

Theorem 5.2 The set of eigenvalues of Q∗1 ∈ B(`1) is the singleton set

{1}

Proof: Suppose Q∗1x = λx for x 6= θ in `1 and λ ∈ C. Since

Q∗1 =

















1 0 0 0 . . .

0 1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

0 0 0 1
2
. . .

. . .

















(5.23)

we have,
















1 0 0 0 . . .

0 1
2
0 0 . . .

0 1
2

1
2
0 . . .

0 0 1
2

1
2
. . .

0 0 0 1
2
. . .

. . .

































x0

x1

x2

x3

x4
...

















= λ

















x0

x1

x2

x3

x4
...

















(5.24)
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From which we have the system,

x0 = λx0
1

2
x1 = λx1

1

2
x1 +

1

2
x2 = λx2

1

2
x2 +

1

2
x3 = λx3

1

2
x3 +

1

2
x4 = λx4

. . .

1

2
xn−1 +

1

2
xn = λxn, n ≥ 2 (5.25)

If x0 is the first non-zero entry of x, then from system (5.25), λ = 1. But λ = 1

implies that xn = x0, 0, 0 . . . which obviously is in `1. If x1 is the first non-zero entry

of x, then λ = 1
2
.

But λ = 1
2
implies from the same system that x1 = 0 a contradiction. Hence λ =

1
2

cannot be an eigenvalue of Q∗1 ∈ B(`1). Similarly, suppose x2 is the first non-zero

entry of x. Then λ = 1
2
; but from 1

2
x2 +

1
2
x3 =

1
2
x3, we have x2 = 0 a contradiction.

By induction xn, n ≥ 1 cannot be the first non-zero entry of x. So that x0 is the only

first non-zero entry of x. So that λ = 1 is the only eigenvalue of Q∗1 ∈ B(`1).

Theorem 5.3 The spectrum σ(Q1) of Q1 ∈ B(c0) comprises the set

{λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2
}

Proof : By virtue of theorems (5.1) and (5.2), it is enough to show that (Q1 −

λI)−1 ∈ B(c0) for all λ ∈ C such that
∣
∣λ− 1

2

∣
∣ > 1

2
.

Let A = (ank), n, k ≥ 0. Consider the matrix equation

(Q1 − λI)(ank) = I, (5.26)
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here I is the identity matrix. That is














(1− λ 0 0 0 . . .

0 (1
2
− λ) 1

2
0 . . .

0 0 (1
2
− λ) 1

2
. . .

0 0 0 (1
2
− λ) . . .

. . .



























a00 a01 a02 a03 . . .

a10 a11 a12 a13 . . .

a20 a21 a22 a23 . . .

a30 a31 a32 a33 . . .

. . .














(5.27)

=














1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

. . .














Solving the matrix equation for the entries of the matrix A = (ank), we obtain the

following:

For k = 0

a00 =
1

1− λ
(5.28)

a10 = (−1)
n−1 1

(2(1
2
− λ))n−1

an0, n ≥ 2 (5.29)

a20 = (−1)
n−2 1

(2(1
2
− λ))n−2

an0, n ≥ 3 (5.30)

a30 = (−1)
n−3 1

(2(1
2
− λ))n−3

an0, n ≥ 4 (5.31)

. . .

aN,0 = (−1)
n−N 1

(2(1
2
− λ))n−N

an0, n ≥ 2, N ≥ 1 (5.32)
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For k = 1,

a01 = 0 (5.33)

a11 =
2− a21
2(1
2
− λ)

(5.34)

a21 =
−1

2(1
2
− λ)

a31 (5.35)

a31 =
−1

2(1
2
− λ)

a41 (5.36)

. . .

This implies that,

a11 =
2n−1(1

2
− λ)n−2 + (−1)n−1

(2(1
2
− λ))n−1

an1, n ≥ 2 (5.37)

a21 = (−1)
n−2 1

(2(1
2
− λ))n−2

an1, n ≥ 3 (5.38)

a31 = (−1)
n−3 1

(2(1
2
− λ))n−3

an1, n ≥ 4 (5.39)

. . .

In general,

aN1 = (−1)
n−N 1

(2(1
2
− λ))n−N

an1, n ≥ N + 1, N ≥ 2 (5.40)

For k = 2

a02 = 0 (5.41)

a12 =
−1

2(1
2
− λ)

a22 =
−2n−2(1

2
− λ)n−3 + (−1)n−1

(2(1
2
− λ))n−1

an2, n ≥ 3 (5.42)
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a22 =
2n−2(1

2
− λ)n−3 + (−1)n−2

(2(1
2
− λ))n−2

an2, n ≥ 3 (5.43)

a32 = (−1)
n−3 1

(2(1
2
− λ))n−3

an2, n ≥ 4 (5.44)

a42 = (−1)
n−4 1

(2(1
2
− λ))n−4

an2, n ≥ 5 (5.45)

. . .

aN2 = (−1)
n−N 1

(2(1
2
− λ))n−N

an2, n ≥ N + 1, N ≥ 3 (5.46)

For k = 3,

a03 = 0 (5.47)

a13 =
−1

2(1
2
− λ)

a23 (5.48)

a23 =
−1

2(1
2
− λ)

a33 (5.49)

a33 =
2− a43
2(1
2
− λ)

(5.50)

a43 =
−1

2(1
2
− λ)

a53 (5.51)

a53 =
−1

2(1
2
− λ)

a63 (5.52)

. . .

Which implies that,

a43 = (−1)
n−4 1

(2(1
2
− λ))n−4

an3, n ≥ 5 (5.53)
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a53 = (−1)
n−5 1

(2(1
2
− λ))n−5

an3, n ≥ 6 (5.54)

. . .

The process is carried for k = 4, 5, 6, . . .

From these, matrix A = (ank) becomes matrix G, where

G = (gnk) =























1
1−λ 0 0 . . .

1
(2( 1

2
−λ))4
a50

2
4( 12−λ)

3

+1

(2( 12−λ ))
4 a51

−2
3( 12−λ)

2

+1

(2( 12−λ ))
4 a52 . . .

−1
(2( 1

2
−λ))3
a50

−1
(2( 1

2
−λ))3
a51

2
3( 12−λ)

2

−1

(2( 12−λ ))
3 a52 . . .

1
(2( 1

2
−λ))2
a50

1
(2( 1

2
−λ))2
a51

1
(2( 1

2
−λ))2
a52 . . .

−1
2( 1
2
−λ)
a50

−1
2( 1
2
−λ)
a51

−1
2( 1
2
−λ)
a52 . . .

a50 a51 a52 . . .

. . .























(5.55)

We now use matrix equations (Q1 − λI)(gnk) = I, and (gnk)(Q1 − λI) = I to obtain

the values of entries a50, a51, a52, . . . , in terms of λ. The process is repeated, when the

entries of matrix (5.55) are now expressed in terms of the numbers a60, a61, a62, . . .

e.t.c. Using induction, the matrix R = (rnk) below obtains. That is

R = (rnk) =





















1
1−λ 0 0 0 0 0 . . .

0 1
1
2
−λ

−1
2( 1
2
−λ)2

1
22( 1

2
−λ)3

−1
23( 1

2
−λ)4

1
24( 1

2
−λ)5

. . .

0 0 1
1
2
−λ

−1
2( 1
2
−λ)2

1
22( 1

2
−λ)3

−1
23( 1

2
−λ)4

. . .

0 0 0 1
1
2
−λ

−1
2( 1
2
−λ)2

1
22( 1

2
−λ)3

. . .

0 0 0 0 1
1
2
−λ

−1
2( 1
2
−λ)2

. . .

0 0 0 0 0 1
1−λ . . .

. . .





















(5.56)
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Note that,

(Q1 − λI) = R
−1 =














1− λ 0 0 0 . . .

0 1
2
− λ 1

2
0 . . .

0 0 1
2
− λ 1

2
. . .

0 0 0 1
2
− λ . . .

. . .














(5.57)

A simple calculation shows that RR−1 = R−1R = I

Matrix (5.56) is also given by the formula

R = (rnk) =






−1
λ(1− 1λ)

, n = k = 0

−1

2k−nλk−n+1(1− 1
2λ)

k−n+1 , k ≥ n ≥ 1

0, otherwise

(5.58)

It is clear that rnk −→ 0 as n −→∞ for all k ≥ 0, provided λ 6= 1, 12 .

By the ratio test, we see that

∞∑

k=0

∣
∣
∣
∣
∣

−1

2k−nλk−n+1
(
1− 1

2λ

)k−n+1

∣
∣
∣
∣
∣
<∞, n = 1, 2, 3 . . . (5.59)

provided
∣
∣λ− 1

2

∣
∣ > 1

2
.

When n = 0,

∞∑

k=0

|rnk| =

∣
∣
∣
∣
−1

λ(1− 1
λ
)

∣
∣
∣
∣ <∞, (5.60)

provided λ 6= 1.

Hence,

∞∑

k=n

|rnk| <∞, n = 0, 1, 2, . . . (5.61)

provided
∣
∣λ− 1

2

∣
∣ > 1

2
.

Moreover,

sup
n

∞∑

k=n

|rnk| <∞, (5.62)
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provided that
∣
∣λ− 1

2

∣
∣ > 1

2
.

Which checks out all conditions specified in theorem (1.3) for matrix R.

Thus R = (Q1 − λI)−1 ∈ B(c0), ∀λ ∈ C such that
∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ >
1

2
. (5.63)

Which implies that (Q1 − λI)−1 /∈ B(c0), ∀λ ∈ C, such that
∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2
. (5.64)

5.2 The Spectrum of Almost Triangular Q1 matrix

on c

In this section the spectrum of Q1 ∈ B(c) is obtained. The folowing corollary arises

from theorem (1.2) in chapter one .

Corollary 5.2.1 Q1 ∈ B(c)

Proof: Conditions (i) and (ii) of theorem (1.2) easily follows from corollary (5.1.1).

It is also clear from matrix (5.5), that

∞∑

k=0

q1nk = 1, ∀n ≥ 0. (5.65)

So that,

lim
n

∞∑

k=0

q1nk = 1 (5.66)

Moreover,

‖Q1‖c = sup
n
{
∞∑

k=0

∣
∣q1nk

∣
∣} (5.67)

= sup
n
{1, 1, 1, . . . } (5.68)

= 1 (5.69)

Which deals with part (iii) of theorem (1.2).
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Corollary 5.2.2 Let Q1 : c −→ c, where Q1 is the almost Nörlund Q matrix. Then

Q∗1 ∈ B(`1) and

Q∗1 =

















1 0 0 0 0 . . .

0 1 0 0 0 . . .

0 0 1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .

















(5.70)

Moreover,

‖Q1‖c = ‖Q
∗
1‖`1 = 1 (5.71)

Proof: By theorem (2.4)

Q∗1 =








χ(limA) (vn)
∞
0

(ak)
∞
0 Qt1








(5.72)

For Q1,

vn = 0, n = 0, 1, 2, . . . (5.73)

Since limn(q
1
nk) = 0, ∀k ≥ 0, it implies that (ak)

∞
0 = θ,

χ = (lim o Q1)δ −
∞∑

k=0

(lim o Q1)δ
k, lim ∈ c∗ (5.74)

That is,

χ = lim δ −
∞∑

k=0

ak = 1− 0 = 1 (5.75)
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Therefore matrix (5.72) reduces to

Q∗1 =

















1 0 0 0 0 . . .

0 1 0 0 0 . . .

0 0 1
2
0 0 . . .

0 0 1
2

1
2
0 . . .

0 0 0 1
2

1
2
. . .

. . .

















(5.76)

By theorem (1.7),

‖Q1‖c = ‖Q
∗
1‖`1 = 1 (5.77)

Theorem 5.4 The set of eigenvalues of Q1 ∈ B(c) is

{λ ∈ C :

∣
∣
∣
∣λ−

1

2

∣
∣
∣
∣ ≤
1

2
}

Proof: Suppose Q1x = λx, for x 6= θ in c and λ ∈ C.

Then as in the proof of theorem (5.1), we have that if x0 is the first non-zero entry of

vector x, then λ = 1. But λ = 1 implies that x1 = x2 = x3 = ∙ ∙ ∙ = xn = . . . , n ≥ 1

which implies that,

x = x0











1

0

0
...











+ x1











0

1

1
...











(5.78)

So that, x is in the span of the vectors

~a =











1

0

0
...











, and ~b =











0

1

1
...











(5.79)

But ~a and ~b are in c. So that x is in c. Hence λ = 1, is an eigenvalue of Q1 ∈ B(c)

corresponding to the eigenvectors ~a and ~b.
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If x1, is the the first non-zero entry of x, then solving for xn in terms of x1 as in the

proof of theorem (5.1), gives

xn = 2
n−1(λ−

1

2
)n−1x1,≥ 2. (5.80)

For x to be in c, we must have
∣
∣
∣
∣
xn+1

xn

∣
∣
∣
∣ ≤ 1, n ≥ 1 (5.81)

i.e,

∣
∣
∣
∣
2n(λ− 1

2
)nx1

2n−1(λ− 1
2
)n−1x1

∣
∣
∣
∣ ≤ 1 (5.82)

or
∣
∣λ− 1

2

∣
∣ ≤ 1

2
.

Theorem 5.5 The set of eigenvalues of Q∗1 ∈ B(`1) is the singleton set {1}.

Proof: Suppose Q∗1x = λx, x 6= θ in `1 and λ ∈ C. Then, the matrix equation

Q∗1x = λx implies that,

x0 = λx0 (5.83)

x1 = λx1 (5.84)

1

2
x2 = λx2 (5.85)

1

2
(x2 + x3) = λx3 (5.86)

1

2
(x3 + x4) = λx4 (5.87)

. . .

And in general,

1

2
(xn + xn+1) = λxn+1, n ≥ 2 (5.88)

70



On solving the system for λ we have that, if x0 is the first non-zero entry of x, then

λ = 1. But λ = 1 implies that x2 = x3 = x4 = ∙ ∙ ∙ = xn = 0, n ≥ 2. Which results in

the vector (x0, x1, 0, 0, . . . )
t, x1, x2 ∈ C. This vector is clearly in `1. If x1 is the first

non-zero entry of x, then λ = 1. But λ = 1 implies that xn = 0, n ≥ 2. This results

in the vector (0, x1, 0, 0, . . . )
t ∈ `1. Which confirms that λ = 1, is an eigenvalue of

Q∗1 ∈ B(`1). If x2 is the first non-zero entry of x, then λ =
1
2
. But λ = 1

2
gives

x2 = 0,which is a contradiction. Hence λ =
1
2
cannot be an eigenvalue of Q∗1 ∈ B(`1).

It is readily seen that xn, n ≥ 2 cannot be the first non-zero entry of x.

All these implies that λ = 1 is the only eigenvalue of Q∗1 ∈ B(`1).

Theorem 5.6 The Spectrum σ(Q1) of Q1 ∈ B(c) forms the set

{λ ∈ C :

∣
∣
∣
∣λ−

1

2
| ≤
1

2
}

Proof: As in the proof of theorem (5.3), limn−→∞ rnk exist for λ ∈ C, such that

λ 6= 1, 1
2
. And supn

∑∞
k=0 |rnk| < ∞ for λ ∈ C :

∣
∣λ− 1

2

∣
∣ > 1

2
. Which deals with part

(i) and (ii) of theorem (1.2) for matrix R = (Q1 − λI)−1. Also observe that
(∣∣
∣
∣
∣

∞∑

k=0

rnk

∣
∣
∣
∣
∣

)∞

n=0

≤

(
∞∑

k=0

|rnk|

)∞

n=0

(5.89)

So that,

sup
n

∣
∣
∣
∣
∣

∞∑

k=0

rnk

∣
∣
∣
∣
∣
≤ sup

n

∞∑

k=0

|rnk| ≤ K (5.90)

for some K ∈ R, provided
∣
∣λ− 1

2

∣
∣ > 1

2
. Hence,

(
∞∑

k=0

rnk

)∞

n=0

(5.91)

is a a monotonic sequence which is bounded.

Therefore limn−→∞
∑∞
k=0 rnk exists provided, λ ∈ C is such that

∣
∣λ− 1

2

∣
∣ > 1

2
. And

this deals with part (iii) of theorem (1.2) for R = (Q1 − λI)−1.

All these implies that (Q1 − λI)
−1
/∈ B(c), ∀λ ∈ C such that

∣
∣λ− 1

2

∣
∣ ≤ 1

2
. This
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ends the proof of theorem (5.6) and it also ends the chapter. In the next chapter

we summarize the results obtained in the thesis. We also point the way forward for

future research.
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Chapter 6

Overview of Results Obtained and

Future Work

6.1 Introduction

In this chapter the results obtained in the thesis are summarised. We do the summary

chapter by chapter. Finally we point the way forward for future research.

6.1.1 Summary of results obtained

In chapter two the following results are obtained:

i. Q ∈ B(c0) has no eigenvalues.

ii. The set of eigenvalues for Q∗ ∈ B(`1) is
{

λ ∈ C : |λ−
1

2
| <
1

2

}

∪ {1}

iii. The spectrum of Q ∈ B(c0) is the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

iv. the set of eigenvalues of Q ∈ B(c) is the singleton set {1} .
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v. The eigenvalues of Q∗ ∈ B(`1) form the set
{

λ ∈ C : |λ−
1

2
| <
1

2

}

∪ {1}

vi. The spectrum of Q ∈ B(c) is the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

In chapter three, we obtain the following results

i. Q ∈ B(bv0) has no eigenvalues.

ii. The eigenvalues of Q∗ ∈ B(bv∗0) are all λ ∈ C satisfying the inequal-

ity |λ− 1
2
| < 1

2
.

iii. The spectrum of Q ∈ B(bv0) is the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

.

iv. The only eigenvalue of Q ∈ B(bv) is λ = 1.

v. The eigenvalue of Q∗ ∈ B(bv∗) are all λ ∈ C satisfying the inequality

|λ− 1
2
| < 1

2
.

vi. The spectrum of Q ∈ B(bv) comprises the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

In chapter four we construct the fine spectrum of Q ∈ B(c). We summarize the

results using a disc in the complex plane centered at the point ( 1
2
, 0) of radius 1

2
. The

interior of the disc make-up III1σ(Q); those on the circumference except the point

(1, 0) form II2σ(Q); the point (1, 0) is the set III3σ(Q) and all the pints exterior to

the circle or disc form the set ρ(Q).

In chapter five we find the spectrum of the almost Nörlund Q operator, the Q1

operator. The following results are obtained:

74



i. Q1 ∈ B(c0) has the set of eigenvalues as
{

λ ∈ C : |λ−
1

2
| <
1

2

}

ii. The set of eigenvalues of Q∗1 ∈ B(`1) is the singleton set {1} .

iii. The spectrum of Q1 ∈ B(c0) comprises the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

iv. The set of eigenvalues of Q1 ∈ B(c) is
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

v. The set of eigenvalues of Q∗1 ∈ B(`1) is the singleton set {1} .

vi. The spectrum of Q1 ∈ B(c) is the set
{

λ ∈ C : |λ−
1

2
| ≤
1

2

}

In conclusion, it is seen that the spectrum is the same in all the cases; although their

sets of eigenvalues differ.

6.2 Future research

We intend to extend the results obtained in this thesis by:

(a) Investigating the spectra of a general Nörlund means.

(b) Investigating the spectrum of the almost Nörlund Q operator on bv0 and

bv spaces.

(c) Constructing the fine spectrum of the Q operator on bv0 and bv.
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