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ABSTRACT 

In this study, the velocity distribution, the variation of temperature and effects of the 

convection heat generated within the boundary layer   for a fluid flowing over an immersed 

curved surface were discussed. Most of the research investigations and findings always 

give emphasis to circulation that results to lift (as explained by Kutta-Joukowski 

hypothesis; Blasius and Kelvin’s theorems), the effects of Shock waves and the formation 

of drag due to skin friction or as a result of the occurrence of separation at the trailing 

vortex/edge. This research study is on the extent to which mass and heat transfer have to 

both lift and drag, respectively on an immersed curved surface. 

In this study, the continuity, the momentum and thermal energy equations were 

nondimensionalised and the solutions were approximated by use of the finite-difference 

method. From this research study, the convection heat generated  due to the viscous effect 

on the curved surface is high within the boundary layer, thus affecting the lift and drag 

force..  

The findings would go a long way in assisting Engineers in making necessary design and 

estimate improvements where such situations warrant, for instance in aerodynamics and 

thermal turbomachinery applications. 
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CHAPTER ONE 
 

1.10 INTRODUCTION 

In this chapter the main terms used in the thesis are defined and elaborated followed by a 

review of the literature related to the present work.  

A figure showing velocity, thermal and concentration layer development, which is used as 

an important tool in vivid understanding of the background of this research problem, is also 

presented in this chapter. Towards the end of the chapter, the statement of the research 

problem, objectives and justification are precisely stated. The chapter ends by giving an 

outline of the entire thesis. 

1.11 HEAT TRANSFER 

Heat transfer involves the study of energy in transit as a result of temperature difference in 

a medium or between media. The temperature difference may arise from various causes 

such as radioactivity, absorption of thermal radiation and release of latent heat as fluid 

vapour condenses, or one due to viscous effect. Heat transfer takes place mainly in three 

modes: conduction, convection and radiation. This study is concerned with the convection 

heat transfer in a fluid flow over an immersed curved surface. 

1.12 FLUID 

Fluid is a general term used for matter in liquid or gas state. That is, fluid is any substance 

that flows and which offers no permanent resistance to changes of shape induced by 

pressure. Only a uniform isotropic pressure can be supported without distortion. Fluid 
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cannot sustain a shear stress however small; that is, a fluid deform continuously with time 

under the influence of a shear stress.  

A fluid may be compressible (as in gas, though air may behave as incompressible fluid if 

flow speed is less than that of sound), or assumed to be incompressible (as in liquid).  

In this research, a Newtonian fluid (is one for which the shear stress s is linearly 

proportion to the rate of angular deformation, ) is considered. 

A fluid flow over an object is steady if its velocity and thermodynamic properties at each 

point in the flow remains constant (this does not necessarily require that the velocity be the 

same at all points in the fluid), otherwise unsteady if the flow variables are dependent on 

time. 

Fluid motion may be constrained by geometrical boundaries to be predominantly parallel to 

the sides. When the conditions (pressure, velocity, density and temperature) at all 

successive cross-sections are identical at any instant, the flow is termed uniform otherwise 

non-uniform. 

Fluid flow may be termed as laminar or turbulent. The term laminar is used to mean a fluid 

flow in which fluid particles downstream of leading edge moves in an orderly manner in 

laminas or layers parallel to the solid boundary as opposed to turbulent whereby fluid 

velocity components have random turbulent fluctuations imposed upon their mean values. 

A fluid flow is determined to be laminar or turbulent by the velocity and channel 

configuration or size. Turbulent fluid motion is an irregular condition of flow in which 

various quantities like velocity and pressure show a random variation with time and space. 
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Turbulent flow is a type of flow characterized by eddies that causes mixing of layers of the 

fluid until the layers are no longer distinguishable. The mixing causes increase in heat 

transfer consequently, the greater the turbulence the larger the amount of heat transfer  

A fluid is termed ideal if it is assumed that there exist no frictional effects between moving 

layers or between layers and the boundary walls. 

1.13 CONVECTION 
In the context of the mode of heat transfer, the term convection refers to the heat transfer 

that occurs on a surface and a moving fluid when they are at different temperatures. 

Convection heat transfer is due to the superposition of energy transport by diffusion 

(random molecular motion) and by advection (the bulk, or macroscopic, fluid motion). 

The contribution due to bulk fluid motion originates from the fact that boundary layer 

grows as the flow progresses. Convection laws rely on the fundamental principles of both 

heat transfer and fluid flow. These include the laws of mass conservation, momentum 

conservation and energy conservation. 

 Convection heat depends on viscosity, thermal conductivity, specific heat and density of 

the fluid. Viscosity also influences the velocity profile of the fluid flow. 

Convection heat transfer may be categorized as forced convection, a situation whereby 

flow is caused by some external means such as by a fan, a pump, or atmospheric winds; or 

as free (normal) convection, a situation whereby the flow is induced by buoyancy forces 

resulting from density variations as a result of temperature variations in the fluid. 

Mass transfer by convection is analogous to convection heat transfer. In mass transfer by 

convection, gross motion combines with diffusion to promote the transport of a species for 
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which there exists a concentration gradient. A particular species may be transported by 

advection (i.e. with the mean velocity of the mixture) and by diffusion (relative to the mean 

motion) in the direction of each coordinate in question. 

In this study, forced convection at a stabilized section is considered therefore convection 

mass transfer will not be of much significance since the gross or bulk fluid motion is due to 

mechanical work and not because of species in a mixture due to the presence of 

concentration gradient. 

1.14 VISCOSITY 

This is the resistance set up due to shear stresses within the fluid particles and the shear 

stresses between the particles and the solid surface for a fluid flowing around a solid body. 

As fluid exerts a shear stress on the boundary, the boundary exerts an equal and opposite 

force on the fluid called shear resistance (or frictional drag). Drag coefficient, Cd always 

depend on Reynolds number (Re) and the body shape. The work done against the viscous 

effects usually causes fluid flow, consequently the energy spent in doing so is converted to 

heat. 

At low values of Reynolds number, the fluid is highly viscous causing deformation drag. 

The fluid is deformed in a very wide zone around the body causing pressure force and 

frictional force.  

At large values of Reynolds number, fluid is less viscous (as in water and air), and the 

viscous effect (deformation) is limited to the boundary layer thickness.  In such a case, 

deformation drag is exclusively friction drag. The shear force exerted on the surface of the 
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body due to the formation of boundary layer results into friction drag. 

 

1.15 BOUNDARY LAYER 
A boundary layer is a thin fluid layer of the fluid from the surface of a body or a solid wall 

in which viscous force is significant. Boundary layer thickness theory is important in 

analyzing flow problems involving convection transport. For fluid flows over any surface 

there may exist three boundary layers; velocity, thermal and concentration boundary layers. 

The fluid particles in contact with the stationary solid surface may assume zero velocity 

under no-slip condition more so at the leading edge. These particles act to retard the motion 

of the particles in the adjoining fluid layer, which again acts to retard the motion of 

particles in the next layer and so on until at a certain distance from the surface, where the 

effect becomes negligible. This region in which the velocity gradient is large is referred to 

as velocity boundary layer. If the fluid particles come into contact with an isothermal plate, 

they achieve thermal equilibrium at the plate’s surface temperature. In turn the particles 

exchange energy with those in the successive fluid layer, and temperature gradients 

develop in the fluid. The region of the fluid in which these temperature gradients exists is 

the thermal boundary layer. And similarly if the concentration of species at the surface 

differs from that in the free stream, a concentration boundary layer develops. This is the 

region of the fluid in which concentration gradients exist. In our study we consider all the 

boundary layers in a laminar flow and investigate the surface friction, convection heat 

transfer and convection mass transfer. The velocity, thermal and concentration boundary 

layers are illustrated in figure 1 below. 
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Fig. 1: Development of Velocity, Thermal and Concentration boundary layer 
   for an arbitrary surface. 
 
 

1.16 LIFT AND DRAG 

Lift is the sum of all the forces on a body that makes it to move perpendicularly to the 

direction of flow. This effect occurs when a fluid moves over a stationary object.  
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Drag is an unavoidable consequence of an object moving through a fluid. Drag is the force 

generated parallel and in opposition to the direction of travel for an object moving through 

a fluid. Drag can be broken down into the following two components: Form drag (or 

pressure drag) – dependent on the shape of object moving through a fluid; and Skin friction 

– dependent on the viscous friction between a moving surface and a fluid 

 

1.17 DIMENSIONAL ANALYSIS 

It is built on the principle of dimensional homogeneity that states that an equation 

expressing a physical relationship between quantities must be dimensionally homogeneous 

i.e. dimensions of each side of equations must be the same. It affords a means of 

ascertaining the forms of physical equations from knowledge of relevant variables and their 

dimensions. Dimensional analysis therefore, is a method employed to obtain a single 

equation that relates all the physical factors of a problem to one another. By dimensional 

analysis, equations in dimensional form are reduced to non dimensional form by using 

dimensionless groups such as Prandtl number, Sherwood number e.t.c. 

 It proves a powerful tool in formulating problems that defy analytical solution and must be 

solved experimentally. Dimensional analysis gives results which only become quantitative 

from experimental analysis. 

 This method has applications in nearly all fields of engineering, in particular 

thermodynamics and hydrodynamics. It is an important tool for presenting experimental 

results in a concise form. It also gives a basis of mathematical models in solving fluid flow 

problems. 



xxiii 
 

 In this study, dimensional analysis has been used in the non-dimensionalisation of the 

governing equations by first selecting certain characteristic quantities and then substituting 

them in the equations. 

 

1.18 LITERATURE REVIEW 

The theory of Convective heat transfer strongly emerged by 20th Century. By its 

nature, convective energy transfer has a close connection with the motion of fluid particles 

and therefore forms part of study in fluid mechanics. The evolutional changes in the latter 

(advent of hydrodynamics of non –Newtonian, electric current-conducting and magnetic 

media, the super- and hypersonic gas dynamics, dynamics of plasma, free molecular and 

heterogeneous flows, the hydro- and gas dynamic effects during physical and chemical 

transformations) have  greatly affected the theory of heat and mass transfer in moving 

media. 

The relation between the intensities of turbulent momentum and heat transfer process is one 

of the subtle problems of the convective heat transfer theory. The determination of Prandtl 

number, Pr is paramount. Its value is of order of unity beyond the viscous sublayer, but 

greater than one in the immediate vicinity of a solid body (at the depth of the viscous 

sublayer). At Pr>100, the turbulent thermal boundary layer is submerged in the viscous 

sublayer of the turbulent hydrodynamic boundary layer. 

On the formation of boundary layer in a steady flow, Allen (1981) gave evidence to 

the effect that the location of transition from laminar to turbulent conditions in a boundary 

layer might be more closely dependent on local skin friction coefficient than Reynolds 

number. 
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Barenblatt et al (2002) in their study on a model of turbulent boundary layer with a 

non-zero pressure gradient observed that turbulent boundary layer at large Reynolds 

number consist of two separate layers upon which the structure of vorticity fields is 

different, although both exhibit similar characteristics. 

In the first layer, vortical structure is common to all developed-bounded shear flows and 

the mean flows. The influence of viscosity is transmitted to the main body of flow via 

streaks separating from the viscous sublayer. The second layer occupies the remaining part 

of intermediate region of the boundary layer. 

The upper boundary of the boundary layer is covered with statistical regularity by large-

scale “humps” and that the upper layer is influenced by the external flow via the form drag 

of these humps as well as by the shear stress. 

In their earlier works it is shown that the mean velocity profile is affected by the 

intermittency of the turbulence and as the hump affects intermittency, the two seeking 

regions are visible. 

On the basis of these considerations, the effective Re, which determines the flow 

structure in the first layer (and is affected in turn by the viscous sublayer), was identified as 

one set of such parameters. The other parameters that influence the flow in the upper layer 

include pressure gradient, px ; dynamic (friction) viscosity,  ; velocity, u ;  fluid’s 

kinematic viscosity,   and density,  . 

Another area that has been of great interest for the last three decades is the 

convective heat transfer through porous medium.  Kim et al (1989) and Harris et al (1997) 

solved the problem of natural convection flow through porous medium past a plate. 
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Researchers such as Chandrasekhara et al (1992) and Panda et al (2003) made contribution 

on mass diffusion and natural convection flow past a flat plate. Recently, Magyari et al 

(2004), have discussed analytical solution for unsteady free convection in a porous media. 

Solving the boundary layer equations has attracted many researchers in the present 

past. Smith et al (1963) in one of his papers presented a method for solving the complete 

incompressible laminar boundary layer equations; both for two-dimensional and 

axisymmetric laminar flow, in essentially full generality and with speed. In subsequent 

papers (1970, 1972) he discussed application potential flow and boundary layer theory in 

hydrodynamics. He also provided a solution technique of the laminar boundary layers by 

means of differential difference method. Wehrle (1986) presented an analytical shears for 

determination of separation point in laminar boundary layer flows. 

The continuing interest in flows and heat transfer over flat plate, concave and 

convex surfaces stems from their possible effects in turbine blades of jet engines, vehicle 

aerodynamics, aircraft wings, submarines, spaceships, cooling lines of power plants etc. 

Flow phenomena are mainly subjected to pressure gradients (favorable or adverse), surface 

curvature and a wide range of Reynolds numbers. 

 There have been many previous investigations of flow and heat transfer on flat 

plate boundary layers with pressure gradients. For instance, investigations of Fukagata et al 

(2002) were concerned with transition to turbulent flow and Reynolds stress distribution, 

while those of Umur and Karagoz (1999) dealt with the augmentation of heat transfer with 

or without stream wise pressure gradients. Filippova and Hanel (1998) developed a curved 

boundary treatment using Taylor series expansion in both space and time for a single 
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particle mass distribution near the wall. This boundary condition satisfies the no-slip 

condition to the second order in a space step and preserves the geometrical integrity of the 

wall boundary. Further still, Mei et al. (1999) and Bouzidi et al. (2001) proposed some 

other boundary treatment methods. In all those methods, the boundary conditions were 

treated separately for some specific space steps. When some variation occurs in the 

specified steps while dealing with curved boundaries, an abrupt change in the single 

particle mass distribution was caused. A unified scheme for curved wall was developed by 

Yu et al (2003). 

In thermal turbomachinery applications; a variation in rate of heat transfer due to a 

small flow disturbance can lead to an increase in thermal stress and decrease the effective 

working life span of such a component. This is true for both hot gas side and coolant side 

of turbomachinery passages. On a highly curved wall, the change in heat transfer rate is 

mainly due to an increase or decrease of the turbulent mixing by the effect of the streamline 

curvature. It has been indicated in Von Karman’s stability argument (1934) that the convex 

wall has stabilizing effect on fluid particles, while the concave wall has a de-stabilizing 

effect with respect to an equivalent reference flat plate.  

The measurement and prediction of rate of heat transfer for a two-dimensional 

boundary layer on a concave surface have been presented by Mayle et al (1979). It was 

found that the heat transfer on the convex surface was less than a flat surface having the 

same freestream, Re and turbulence. Concave surface heat transfer was augmented when 

compared to the flat surface. 
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Good agreement between numerical results and heat transfer experiments was noted for the 

convex surface when a two-dimensional differential boundary layer code was used with 

modified curvature model. 

For the concave surface, the agreement with the measured heat transfer data was poor due 

to the uncertainties in the turbulence model. Camci (1985) obtained similar conclusions in 

heat transfer experiments performed on a gas turbine rotor blade under realistic free stream 

conditions. 

One area of practical interest to researchers is on the degradation of the airfoils. 

Aerodynamic performance of the airfoils and wing plan form designs that are optimal for 

convectional, large-scale and high speed (therefore, high Reynolds number) would degrade 

significantly when they are used for low Re applications. The predominance of fluid 

viscosity effect for the low Reynolds number applications would result in ‘boundary layers’ 

growing rapidly and separating from the surfaces of the airfoils easily. 

The behaviour of the laminar boundary layer on the low Reynolds number airfoils 

would affect the aerodynamic performance of airfoils significantly. Since laminar boundary 

layers are unable to withstand any significant pressure gradient, laminar flow separation is 

usually found on the low Reynolds number airfoils; and post-separation behaviour of the 

laminar boundary layers account for the deterioration in the hydrodynamic performance of 

low Reynolds number airfoils. The deterioration is exhibited in an increase in drag and 

decrease in lift. 

The low-pressure turbines (LPT) airfoils are usually designed to have laminar flow 

along some parts of the suction surface and turbulent conditions in the rear part after going 
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through laminar-turbulent transition. Often there exist small separation bubbles inside the 

boundary layer, where the flow reattaches after transition sets on. 

There are quite many publications dealing with the development of boundary layers 

and separation bubbles in low – pressure turbines. Stratford (1957) investigated laminar 

separation phenomena in boundary layer. Tan and Auld (1991) performed hot wire tests on 

a turbine cascade in a low speed wind tunnel at various Reynolds number with transition 

and separation bubbles. In their paper they reported variation of different boundary layer 

parameters. 

Scrivener et al (1991) observed losses connected with the appearance of separation bubbles 

on the suction surfaces of the LP turbines downstream of the blade row. Denton (1993) 

provides a very comprehensive overview over loss mechanisms in turbomachines with 

special emphasis on the concept of entropy generation. He gives a good classification of the 

different types of losses encountered in turbomachinery. 

More experimental data on the flow and turbulence quantities in separated boundary 

layers with reattachment and transition were performed. For instance, Rivir (1996), Qui and 

Simon (1997), Sohn et al (1998), and Hatman and Wang (1998a, 1998b) conducted 

experiments on separated flow transition and used data to develop a model for transition in 

these flows. 

From the above discussed research investigations and findings, it is clear that limited 

research study has been carried out to precisely give the extent to which the variations in 

velocity, temperature and convection heat transfer would have within the fluid boundary 
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layer on a fluid flowing  over  immersed curved surface. This was the motivation of this 

research study. 

 

1.19 STATEMENT OF THE RESEARCH PROBLEM 

 
 
As fluid flow over any immersed curved surface, some work is done against viscous effects 

and energy spent is converted to heat. Also, vorticity formed in boundary layer due to high 

velocity gradient is swept outwards from the boundary layer. 

Although much research has been carried out on mass and heat transfer, limited findings 

have been concluded on the extent to which temperature and velocity variations within the 

boundary layer would have in fluid flow over immersed curved surfaces. This thus forms 

the basis of this research study. 

 

1.20 OBJECTIVES OF THE STUDY 

This study is aimed at determining 

 the velocity distribution of fluid flow past an immersed curved surface. 

 the variation of temperature within the thermal boundary layer of fluid flow past an 

immersed curved surface due to the velocity variations. 

 the effect of heat generated within the boundary layer of  an immersed curved 

surface. 
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1.21 JUSTIFICATION 
Rise in temperature decreases viscosity of fluid and vice versa, thus the need to 

design blades that would withstand such variations. 

Heat injection or withdrawal on submerged curved surfaces enhance velocity 

variations in fluid flow thereby improving the maneuvers of such bodies in the fluid; as in 

the case of flying planes, pumps and fan blades etc, so more comprehensive research study 

is necessary. 

Aquatic animals like fish that solely depends on their effective swimming ability, which is 

affected by variation in fluid physical conditions such as temperature. 

 

1.22 THESIS OUTLINE 
In chapter one of this thesis we have the introduction and definition of the basic terms. The 

literature review, statement of the research problem, objectives and the justification of the 

study are included.  

In chapter two the outlines of the governing equations representing the conservation law of 

mass, momentum and energy – which are fundamental to the analysis of fluid flow 

phenomenon, are given. The problem is defined and the equations are non-dimensionalised. 

In this chapter, the non dimensional numbers are identified and mathematical formulations 

are outlined. Since the equations that arise are non – linear, the finite difference method is 

applied to compute the velocity and temperature profiles in accordance to the defined 

boundary conditions. Computer program, in this case JAVA is used to analyze the final set 
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of the governing equations expressed in finite difference form with imposed boundary 

conditions. 

In chapter three, the equations governing the flow are reorganized in finite difference form 

and the boundary conditions are given. The governing equations are then solved by using 

computer program. The various characteristic quantities used in solving the governing 

equations are described. The obtained results are then presented in graphical form, followed 

by discussion pertaining to velocity and temperature profiles; and the effects of heat 

generated within the boundary layer of an immersed curved surface.  

In chapter four, the conclusion concerning the study and recommendations are summarized. 

At the end of the chapter, the list of references used in carrying out this study is arranged in 

alphabetical order. 
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CHAPTER TWO 
 

2.10 OVERVIEW 

In this chapter, mathematical formulation of equations governing a steady two-dimensional 

flow for an incompressible Newtonian fluid past an immersed curved surface is done. The 

fundamental equations to be considered in this research include the conservation equation 

of mass, conservation equation of momentum and equation of energy. Then a flow 

configuration of the fluid flow under consideration is described. 

Later in the chapter, equations governing the fluid flow are given in their general 

dimensional forms. The non- dimensional parameters are then defined by using superscript 

star (*) in section 2.15; which are finally written in a finite difference form.   

2.11 ASSUMPTIONS AND APPROXIMATIONS 

To achieve the pre-stated objectives and to work with simplified forms of equations, the 

following assumptions are made: - 

1 The fluid have negligible body forces (X = Y = 0).  

X and Yare body forces (such as the gravitational force, centrifugal force, magnetic 

and electric fields) along the x- and y- directions respectively. 

2 Fluid is Newtonian. 

3 Fluid is assumed incompressible.  

4 The fluid is assumed to have constant thermal conductivity. 

5 The fluid flow velocities are small compared to that of light ; i.e.,  12

2


c
q  
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The boundary layer approximations are: - 

1  ; Velocity component along surface is much larger than that normal to the 

surface. 

2   ; the gradients normal to the surface are much larger than those 

along the surface. 

  

2.12 GOVERNING EQUATIONS 

Essential equations of fluid dynamics are based on the following general laws of 

conservation: conservation of mass, momentum and energy 

 

2.12.1 Equation of Continuity  

This equation combines the law of mass conservation and that of the transport theorem; 

which is a Mathematical expression that provides a way of identifying a finite system (such 

as a control volume through which rate of change of any property or characteristics of most 

system is examined). 

The equation arises from the fundamental prepositions that under normal conditions matter 

may neither be created nor destroyed and that the flow is continuous. Assuming unsteady 

flow condition, the general equation of continuity is given by 

    0

 q

t



 ,       (2.1) 

where   is the fluid density, q  is the fluid velocity and 


 the gradient operator. 
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Since the time rate of change of density in the system goes to zero over time in steady 

incompressible flow, equation (2.1) reduces to: 

  0 q


,         (2.2a) 

where jviuq


  in two-dimensions. 

or             (2.2b) 

which is the equation of continuity for single species fluid in the velocity boundary 

layer in two dimension. 

2.12.2 Equation of  Conservation of Momentum  

The equation of conservation of momentum arises when considering both the transport 

theorem and  Newton’s second Law of motion. In considering a control volume, Newton’s 

second Law of motion states that the sum of all forces acting on the control volume must be 

equal to the net rate at which momentum leaves the control volume. For instance,  the 

difference in the rate of momentum of outflow and inflow, i.e. 

(Out flow – inflow) = [sum of all forces (Body forces X, Y plus surface forces Fs). 

There are two kinds of forces that may act on the fluid; namely body forces in the x – and y 

– directions respectively (for example, gravitational, centrifugal, magnetic and/or electric 

fields) and surface forces (forces due to static pressure and viscous stresses). The viscous 

stresses at any point in velocity boundary layer may be resolved into two components – the 

normal stress (tensile stress), ii , which vanishes at zero velocity gradient and shear stress, 

ij  . Viscous stress is a natural consequence of fluid motion and viscosity. 
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The momentum equation along x – axis becomes; 

X
yxx

p
y
uv

x
uu yxxx 

































 


     

  (2.3) 

Along y-direction, the momentum equation becomes; 

 

Y
xyy

p
y
vv

x
vu xyyy 


































 


      

 (2.4) 

 The viscous stresses and shear stresses in two dimensions are defined by; 





















y
v

x
u

x
u

xx 
3
22

 
       (2.5a) 





















y
v

x
u

y
v

yy 
3
22

       
 (2.5b) 

















x
v

y
u

yxxy 
       

 (2.5c) 

Substituting equations (2.5a-c) into equation (2.3) and (2.4) we obtain momentum equation 

along the x- and y-directions respectively as  

X
x
v

y
u

yy
v

x
u

x
u

xx
p

y
uv

x
uu 






















































































 

3
22

 
 (2.6a) 

and 

Y
x
v

y
u

xy
v

x
u

y
v

yy
p

y
vv

x
vu 






















































































 

3
22

 
 (2.6b) 
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In this study negligible body forces are assumed; and substituting (2.2b) into (2.6a) and 

(2.6b) we get  








































yx
v

y
u

x
u

x
p

y
uv

x
uu

2

2

2

2

2

2 
     

 (2.7a) 

and 








































2

22

2

2

2
y
v

xy
u

y
v

y
p

y
vv

x
vu 

     
 (2.7b) 

Considering very small boundary layer thickness,   to the extent that the velocity 

component in direction along the surface is much larger than that normal to the surface, (for 

instance ) and gradients normal to the surface being much larger than those along the 

surface ),,(
x
v

y
v

x
u

y
u












 , then equation (2.7a) reduces to 

2

21
y
u

x
p

y
uv

x
uu














 


        (2.8). 

and equation (2.7b) reduces to  

  0



y
p          (2.9)  

 The pressure doesn’t vary in the direction normal to the surface, so pressure in the 

boundary layer depends only on x and equals to that of the freestream outside the boundary 

layer; which depends on surface geometry therefore we have, 

   
dx
dp

x
p





  ,        (2.10)  

which is obtained by applying Bernoulli equation 
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           (2.11) 

to the streamline at  the wall with known potential flow. 

In  this particular case, we consider the accelerated and decelerated flows along the curved 

surface producing both favorable and adverse pressure gradient whose tangential 

component of the velocity of the outer flow reveals  a power law dependence on 

streamwise distance x measured along the curved surface boundary as 

    ,          (2.12) 

where c is a positive velocity coefficient and m an integer obtained from the angle of 

inclination,  radians  at any given point along the curved surface from a horizontal surface 

such that . The fluid velocity gradient along the curved surface increases 

when m > 0, and decreases for m < 0. 

Substituting equations (2.10) – (2.12) into equation (2.8), the boundary layer momentum 

equation reduces to 

    2

2

y
uP

y
uv

x
uu t 









 

,      
(2.13) 

 where  the pressure term in dimensional form is defined by  

1221  m
t mxc

dx
dpP

 .
 

2.12.3 Equation of Conservation of Thermal Energy. 

This equation is derived from the First Law of Thermodynamics that asserts the mutual 

equivalence between heat and mechanical work, which is stated as  the amount of heat 



xxxviii 
 

added to a system dQ equals the change in the internal energy dE plus the work done dW. 

In mathematical expression becomes  

  
pdVdEpddEdWdEdQ 











1

    (2.14) 

In most standard Fluid Mechanics text books this equation is written as follows:- 

  





  qQq


PQ

Dx
Dh

Dx
Dh           (2.15) 

Since ρ is assumed constant and from Equation of Continuity, 0 q


 then (2.15) reduces 

to; 

  Q
Dx
Dh Q


 ,        (2.16) 

where h is the enthalpy per unit mass of the mixture, is the dissipation function,  and 

 are the heat flux in the  x- and y-directions, respectively.  is the internal heat 

generated. 

By considering steady incompressible flow in a control volume, the standard thermal 

energy equation for thermal boundary layer is given by 

,   (2.17)
 

 

 where   

    is the viscous dissipation, which accounts for the rate at which mechanical 

energy 

                   is converted to thermal energy due to viscous effects in the fluid. 

      is the rate at which energy is generated per unit volume. 
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Again,  










1pEh

         
(2.18) 

     which is the enthalpy per unit mass of species, and in differential form becomes 

  










11 pddpdEdh

       
 (2.19) 

By use of substantial or material derivative then 

Dx
Dp

Dx
Dp

Dx
DE

Dx
Dh 

 2

1


        
(2.20) 

From Maxwell’s thermodynamic relations and the equation TdSdQ  , and from equation 

(2.14), we find  












1pdTdSdE .         (2.21) 

Substituting (2.21) into (2.19) and simplifying, we get 

dpTdSdh

1


         

(2.22) 

From Newton’s Law of cooling, the local heat flux is defined by 

   



 TThq ss
"

,         (2.23) 

              where 
*
h  is the local convection coefficient. 

Since flow conditions vary from one point to another on the curved surface, both  and 

*
h also vary along the surface. 

At any distance x from the leading edge of the curved body, local heat flux   is obtained 

by applying Fourier’s Law to the fluid at  as 
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0

"





y

s y
Tkq

        
(2.24) 

since by no slip-condition, the energy transfer is by conduction only. 

The local convection heat coefficient is then expressed as 

  
*
h          (2.25) 

For Newtonian fluid, the shear stress,  is expressed as 

  
oy

s y
u




 
 ,       

(2.26) 

where  is dynamic viscosity; and the local friction coefficient,  for external flow is 

given by            

 (2.27) 

From equation (2.17),  (for incompressible two dimensional flow) is defined by 

          (2.28). 

The term in this equation originates from viscous shear stresses and 

  arises from viscous normal stresses, which by this flow problem is 

assumed negligible. 

In the thermal boundary layer, the rate of heat conduction along the y – direction is larger 

than that along x – direction . Further still, by assuming that   

are very negligible; and that the nature of substance is as of a perfect gas  
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whose specific enthalpy S = S(p, T) ;  a function of pressure and temperature such that 

  .       (2.29) 

Then the First Law of Thermodynamics, equation (2.17) reduces to   

    































 Q

y
u

y
Tk

y
Tv

x
Tuc p

2

2

2


 

or 

                       (2.30) 

where the term   is the viscous dissipation and the term  is the internal 

energy generated. 

The term  on the left hand side accounts for advection whereas  accounts 

for conduction. 

Since  the flow speed is neither sonic nor high speed motion of lubricating oils, for further 

simplicity,  the viscous dissipation term may be ignored;  thus the temperature – 

formulation of the First Law of Thermodynamics is expressed as 

 
       

 (2.31) 

  

2.13 DESCRIPTION OF THE FLOW 
In this study, an external two – dimensional steady incompressible Newtonian fluid flowing 

past a submerged curved surface is considered. The immersed curved surface provide both 

concave and convex surfaces on its opposite sides. 
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In considering fluid flow over the convex surface, at point A (Fig: 2) the freestream fluid is 

brought to rest at the forward stagnation point; accompanied by rise in pressure. With 

points along the increasing streamline, pressure decreases and the boundary layer develops 

under the influence of a favourable pressure gradient . Pressure eventually reaches 

a minimum at B. From B onwards, further boundary layer develops in the presence of an 

adverse pressure gradient .Here upstream velocity U and freestream  velocity 

U(x) are different since U(x) depends on distance x from stagnation point. U(x) = 0 at 

stagnation point and fluid accelerates due to favourable pressure gradient 

; and it reaches maximum when   . The fluid then 

decelerates due to adverse pressure gradient . The velocity 

gradient at the surface      eventually becomes zero at separation point (point where 

fluid near surface lacks sufficient momentum to overcome the pressure gradient and further 

downstream movement becomes impossible). Since oncoming fluid also inhibits flow back 

upstream, boundary layer separation must occur (i.e. the boundary layer detaches from the 

surface and a wake is formed in the downstream region. At this region, flow is 

characterized by vortex formation and is highly turbulent – in which case much energy is 

dissipated as heat. 
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Fig. 2:  Schematic diagram of the flow. 
 
The separation boundary layer tends to curl up in the reverse flow and the region of 

disturbed fluid extends for some distance downstream. Since energy eddies are dissipated 

as heat, pressure downstream remains approximately the same as at the separation point. 

In such situation pressure acting at A is in excess of that around C resulting on a resultant 

force on the curved surface in direction relative to fluid motion, called pressure drag. The 

other force on the surface in direction relative to the fluid motion is the fluid shear stress at 

the surface called profile drag. Evident still is the induced drag due to the dissipation of the 

thin turbulent wake (for the streamlined body with finite span). The sum of profile drag and 

induced drag give the total fluid drag on the curved surface. 

The point of boundary layer transition owes its determination from Reynolds number. It 

determines if the flow is laminar, transitional or turbulent. 
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2.14 MATHEMATICAL FORMULATION 
In this study, a viscous incompressible flow past a curved surface submerged in a fluid is 

considered. A reasonable approximation for flow is done on a slightly contoured concave 

down surface.  

The entire curved surface is defined by a trigonometric function of the form xay sin  

where 10  a  and  x0 for a reasonably curved surface. The end points are set at 

specific coordinate values when solving for a particular case upon which length of 

curvature is analytically obtained. 

y                                      
                             
                                        
                                     
                                       
                                        
                                       
                                        
                                        
                                        
                                       
                                     
                                       
                                        
                                       
                                        
                                        
                                  x    
                    

  NB: 
"
sq  - the local heat flux. 

Fig. 3: Schematic diagram of a finite concave downward surface.  

 
The set boundary conditions are:- 

On the plate’s surface, the non- slip condition gives velocity as:  . 

When  

"
sq

"
sq

"
sq

"
sq

"
sq

)(xfy 
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At the leading edge;  ; and at the trailing edge;   

, and . The fluid satisfies the non-slip condition on the wall. 

Temperature at the leading edge; , and at the trailing edge  

 

2.15 NON-DIMENSIONALISATION OF THE EQUATIONS 
In this study, all the dimensionless independent variables are expressed by using the 

superscript star (*) 

In non-dimensionalization of the equations (2.2b), (2.13), 2.31), we first select certain 

characteristic quantities L, V, P and T to denote the characteristic length, velocity, pressure 

and temperature respectively.  

Again, to normalize the boundary layer equations, the dimensionless independent variables 

are defined as; 

 Lxx  ,  Lyy  ,  Vuu  ,  Vvv  ,  Ppp  ,   
 S

S

TT
TTT






 ,  

On substituting these variables into the boundary layer governing equations we have the 

Continuity equation as  

 
 

 
  0















Ly
Vv

Lx
Vu

  , which simplifies to 

0















y
v

x
u

          (2.32) 

The momentum equation (2.13) becomes 
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2

2

2

22



























y

u
L
V

dx
dp

L
P

y
uv

L
V

x
uu

L
V 


, and by multiplying both sides by 2V

L
 we 

have  2

2























y

u
LV

P
y
uv

x
uu T


  ,     (2.33) 

where the pressure term  PT is given by  

The energy equation (2.31) becomes 

 

Dividing through by  simplifies to 

 

  or  

 ,             (2.34) 

where   is the generated heat term defined by  

2.16 NON-DIMENSIONAL NUMBERS 

To be able to apply the results obtained in equations (2.32) – (2.34) to any other 

dynamically similar case, the following dimensionless parameters or numbers are 

considered:  

 

 

The Prandtl Number, Pr 
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This number is named after Ludwig Prandtl-the German scientist who introduced the 

concept of boundary-layer theory. It is the parameter, which relates the relative thickness of 

the hydrodynamic and thermal boundary layers. The Prandtl number provide the link 

between the velocity field and the temperature field and it is expressed as 

                    k
c

ck
p

P








rP
     

That is, it is the ratio of momentum diffusivity to thermal diffusivity. 

 
Reynolds number, Re 

This is denoted by Re and is defined as the ratio of inertia forces (forces that there is no 

acceleration of a body  to viscous forces (forces restricting motion of objects in 

fluids . It is given by 


 VLVL

Re
 

 

Nusselt Number, Nu 

This provides a dimensionless temperature gradient at the surface and it is given by     

    

Eckert number, Ec 

This is the measure of kinetic energy of the flow relative to the boundary layer enthalpy 

difference across thermal boundary layer, given by; 
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  Ec =  
)(

2

TTC
V

sp

 

It plays an important role in high speed flows for which dissipation is significant. 

 

Peclet number, Pe 

This is a dimensionless independent heat transfer parameter defined by 

 

Coefficient of friction, Cf. 

This is a dimensionless surface shear stress, written as, 

 Cf. =  
2/2V

s




 

 

Skin friction coefficient,  

This is given by; 

  
0




y
s y

u


 

2.17 FINAL SET OF EQUATIONS IN NON DIMENSIONAL FORM 
 

Substituting dimensionless parameters in equations (2.33) – (2.36), the equations to be 

solved are 
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           (2.35) 

          (2.36) 

         (2.37) 

 where PX is the pressure term, which is dependent on the x variable. 

The boundary conditions in non dimensional form are: 

The velocity at the leading edge  ; . At the trailing edge we 

have  ; . 

At the wall,  and at the free stream  

Temperature at the leading edge ; and at the trailing edge .  

 At the wall  and at the free stream  

  

 

2.18 METHOD OF SOLUTION  
 

The numerical analogue to solve the governing equations (2.35) to (2.37) is developed by 

discretization process, and the partial differential equations describing the flow are 

programmed for computer solution.  

The method of numerical discretization chosen is the finite difference method, in which the 

value of the function is calculated at a large number of points on a structured 

mesh with uniform spacing in Cartesian coordinates spanning the region of interest as 

shown below. 



l 
 

   0

    0

   1

   X

    Y

 

Fig. 4: Definition of the Mesh 

  

The advantage of finite difference method, amongst many others is based on its stability, 

convergence and consistency.  

In order to approximate the equations (2.35) to (2.37) by a set of finite difference equations, 

we first define a suitable mesh. 

Let the x – y plane be divided into a network of uniform rectangular cells of width  and 

height  by means of the set of lines   

and  respectively. Each corner of the cell forms the mesh or 

grid point, which is identified by a double index i, j defining its location with respect to x 

and y.  
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Defining a particular grid point variable as  both the 

previous and next grid points along the x-axis are defined as 

   respectively. In a 

similar manner, the previous and the next grid points along the y-axis are  

 respectively. 

By using Taylor’s series expansion we have 

            

    

On eliminating  from equation (2.41) we obtain the finite difference approximation 

to the first order partial derivative as  

          (2.39) 

Similarly, by eliminating  from equation (2.38) we obtain the finite difference 

approximation to the second order partial derivative as 

    .     (2.40) 

Errors associated with higher order terms in equations (2.39) and (2.40) can be reduced by 

choosing as small as possible, meaning the successive terms of the Taylor’ series 

approximation are progressively growing smaller. 

The central difference formulae that provides faster convergence for the first and second 

order partial differential equations with respect to y- axis are similarly expressed as 

                   

        (2.38) 

   (2.41) 
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The numerical difference formulae are always classified by geometrical relationship of the 

points (i.e. central, forward or backward differencing) or by the accuracy of the expression. 

The Central difference is second- order accurate whereas both the Forward and Backward 

differences are first - order accurate as higher order terms are neglected. The forward 

difference form of equations (2.39), (2.40) and (2.41) are given by 

  

   

  

  

Both types of the finite difference formulae are used because the equations governing the 

flow contain terms of unequal importance, so higher order approximation is used for 

significant terms such as the viscous dissipation and conduction terms. The one-sided 

difference (forward difference) is required for approximating the derivatives at the 

boundaries. 

Using formulae (2.39) to (2.42) and by denoting by  respectively, 

the finite difference analogues of the partial differential equations governing the flow in 

consideration are 

  .       (2.43) 

      (2.44) 

    (2.42) 
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      (2.45) 

  

In Chapter three, the numerical differentiation by use of the Newton’s interpolation formula 

is employed to compute the shear stress along the surface within the boundary layer 

thickness defined by  . The finite difference shear stress is expressed as 

  The equations (2.43) to (2.45) governing the flow model expressed in 

finite difference form  are reorganized and then solved using the computer program 

(JAVA)  to obtain the  temperature and velocity profiles of the flow within the boundary 

layer, which are  graphically presented  and the results of the velocity and temperature are 

discussed. 

 

 

 

 

 

 

CHAPTER THREE 
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3.10 OVERVIEW 

In this chapter the equations governing the flow problem in finite difference form are 

reorganized, computed by numerical method through iterations and the obtained velocity 

and temperature profiles within the boundary layer are graphically represented. 

3.11  GOVERNING EQUATIONS IN FINITE DIFFERENCE FORM 
The governing equations (2.43) to (2.45) describing the steady laminar incompressible flow 

past an immersed curved surface in finite difference form are reorganized and expressed as 

follows: 

       (2.46) 

    (2.47) 

     (2.48) 

 

3.12 The Boundary Conditions 

 

For the stability, consistency and convergence of the finite difference scheme or to ensure 

that the truncation error count go to zero, the computations are made by using small values 

of   and  , and in this case   rad. along the curvature,  for 

, 14 since the surface curvature of the immersed 
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body is define by a trigonometric function and the flow under investigation is confined 

within the thin fluid boundary layer. 

Considering the velocity boundary layer; at the leading edge,  ; 

 . At the surface contour (wall),   

and at the free stream  . The similarity parameter is Re.  

For the Thermal boundary layer; at the wall  and at the free stream . The 

similarity parameter is Pe 

3.13 DISCUSSION OF THE RESULTS 

3.13.1 Profiles. 

The system of equations (2.46 – 2.48) subject to the boundary conditions are solved 

numerically by the finite difference method. In order to determine velocity and temperature 

distribution within the boundary layer a JAVA program was run for some physical 

reference values in the governing equations of the flow. They were  set or approximated at 

the following characteristic quantities : ,  ,  

,  

, 

,  

,  , 
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. These are the reference values for which 

desirable results of the governing equations are obtained. Pr= 0.75 is for air (assumed to be 

incompressible) and Re = 50000 is within that for laminar flow. The fluid velocity used in 

the computer program is at speed greater than sonic speed but not at supersonic speed, 

since at supersonic speed shock waves emerges. The wall temperature is estimated at room 

temperature. The temperature and velocity variations are then plotted against - either the 

horizontal distance (x-axis) at grid points along the curved surface or vertical distance (y-

axis) at the grid point from the solid surface within the fluid boundary layer.  

The pressure term in finite difference form is defined as , where m is 

an integer   and c is a positive velocity coefficient 1 or 2 or 3 

meant to vary free stream velocity at the leading edge of the curved surface; whereas the 

generated heat is represented by   

The velocity and temperature profiles are obtained by performing iterations for i and j as 

discrete variables for space interval variables x and y, e.g. x=1 is grid point at a distance 

equivalent to  rad. from the leading edge of the immersed solid surface and for j=1 

means a distance equivalent to  from the wall of the solid body. 

 Both the temperature and velocity profiles are shown by use of different colours for 

selected points along the x-axis at various grid points along the solid surface. 

The results are obtained for the parameters Pr, Re and the pressure term for the steady 

laminar flow, which are graphically presented below. 
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3.13.2 The Obtained Graphs of Fluid Flow 

 

 

Re = 50000, Pr = 0.75 , Pe = RePr,  

Fig. 5: Horizontal temperature profile on convex surface with favourable pressure 

            gradient 

- chosen horizontal planes along the vertical distance from the solid surface 
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Re = 50000, Pr = 0.75 , Pe = RePr,  

 

Fig. 6: Vertical velocity profile on concave surface within boundary layer. 

 

- chosen vertical planes along the horizontal distance of the solid surface 
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- chosen vertical planes along the horizontal distance of the solid surface 

Re = 50000, Pr = 0.75 , Pe = RePr,  

 

Fig. 7: Horizontal velocity profile on convex surface with zero pressure gradients. 
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- chosen vertical planes along the horizontal distance of the solid surface 

Re = 50000, Pr = 0.75 , Pe = RePr,  

 

Fig. 8: Horizontal temperature profile within the thermal boundary layer thickness. 
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3.13.3 Discussions of the Profiles 

i. From figure 5, temperature profile varies exponentially at region very close to the 

solid boundary within the thin boundary layer, though remains relatively linear 

away from the solid surface with a decreasing temperature gradient on the convex 

surface with favourable pressure gradient. This indicates that the rate of heat 

transfer is considerably high at points very close to the convex surface within the 

boundary layer thickness, consequently a decrease in fluid viscosity. Again this 

makes the boundary layer to reach separation condition sufficiently early. It then 

follows that heat generated due to viscous drag on the curved surface has an effect 

on the lift and drag forces.  

ii. From figure 6, some specific points along the x axis are chosen and the variation of 

the vertical velocity component versus vertical distance within the boundary layer 

along the convex surface is such that as the gradient of the curvature increases, the 

vertical velocity component also increases to attain a constant magnitude away from 

the boundary layer thickness. Consequently the frictional drag on the curved surface 

is reduced.  This effect causes fluid to detach from the surface causing early fluid 

separation at some distance from the leading edge in comparison to that of a flat 

surface. The vertical velocity component contributes significantly to transfer of 

momentum or energy through the boundary layer in which case would increase lift 

force. 

iii. From figure 7, the horizontal velocity component within the boundary layer on 

convex surface with zero pressure gradients close to the leading edge slightly 
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increases as distance along the surface increases downstream. The horizontal 

velocity gradient decreases upstream, which is clearly indicative that friction drag is 

significant at the region close to the surface and should not be ignored. 

iv. In figure 8, the temperature profile on the boundary layer on the convex surface 

with favourable pressure gradient increases symmetrically as fluid flow downstream 

within the thin boundary layer; and viscous effects of fluid decreases with a 

decrease in density that occurs when temperature increases, consequently a low 

pressure fluid flow is experienced on the convex surface. 
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CHAPTER FOUR 

4.10 CONCLUSION 

An analysis on the velocity and temperature variation on fluid flow over an immersed 

curved surface has been done. After several iterative attempts in variation on Reynolds 

number, it has been observed that optimum values of characteristic quantities are 

achievable at Re = 50000, Pr = 0.75. The pressure term was evaluated at specific value of 

m and c; where m is an integer obtained from the angle of inclination,  radians  at any 

given point along the curved surface from a horizontal surface such that . 

The fluid velocity gradient along the curved surface increases when m > 0, and decreases 

for m < 0. c is the velocity coefficient that controls the outer flow fluid velocity. 

Since equations governing the flow in the study are non linear, their solutions were 

obtained by use of finite difference scheme. 

From the discussions on the temperature and velocity profiles within the thin thermal and 

velocity boundary layers, it is observed from the profiles that viscous effects are dominant 

at very close region to the curved surface within the boundary layer. At the boundary layer, 

heat energy generated enables molecules to overcome cohesive forces between them and so 

move freely causing a decrease in viscosity of the fluid.  Due to this temperature rise, a 

slight decrease in density occurs; this results into increase on lift force, which does not 

waste energy. 
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In less dense fluid, fewer molecules are available per unit volume to transfer the motion 

from the moving layer; this in turn affects the spread of the different layers. As viscosity 

falls, the momentum is transferred less readily between the layers. 

In a nutshell, both lift and drag forces are affected by the heat generated on the thermal 

boundary layer. Though it reduces viscous drag, it increases the lift on an immersed curved 

surface. 

 
 
 

4.11 RECOMMENDATIONS 

In this thesis, the meaningful results on effects of convection heat generated within the 

boundary layer to both lift and drag were obtained when most of the parameters used were 

put at certain specific constants. However, it is quite imperative to continue exploring the 

following areas: 

i. Compressible three-dimensional flow over immersed curved surface. 

ii. The effect of MHD flow over immersed curved metallic surface. 

iii. Experimental research on the effect of heat transfers on lift and drag force on an 

immersed curved surface. 

iv. Further study on effects of heat and mass transfer on turbulent fluid flow over 

immersed curved surface. 
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