
Allometric Equations for Estimating Tree Biomass in 

Agricultural Landscapes in Western Kenya 

 

 

Shem Kuyah 

 

 

A Thesis submitted in partial fulfillment for the degree of 

Doctor of Philosophy in Plant Science in the Jomo Kenyatta 

University of Agriculture and Technology 

 

 

 

 

2012



ii 

 

DECLARATION 

This thesis is my original work and has not been presented for a degree in any other 

University 

Signature-----------------------------------     Date----------------------------- 

Shem Kuyah              

 

This thesis has been submitted for examination with our approval as University 

Supervisors. 

1.  Signature-----------------------------------   Date----------------------------- 

Prof. Catherine Muthuri  

JKUAT, Kenya             

2.  Signature-----------------------------------   Date 18 November 2012  

Dr. Johannes Dietz 

World Agroforestry Centre, Peru 

3.  Signature ----------------------------------   DATE-------------------------- 

Dr. Peter Mwangi  

JKUAT, Kenya 

4.  Signature ----------------------------------   DATE-------------------------- 

Dr. Ramni Jamnadass 

World Agroforestry Centre, Kenya 

  



iii 

 

DEDICATION 

This work is dedicated to my late Grandmother, Roselany Muyela Kuyah and to all 

those who have supported my academic life. This is for you! 

  



iv 

 

ACKNOWLEDGEMENT 

This work was carried out within the Carbon Benefits Project and was supported by a 

grant from the Global Environment Facility. I acknowledge the World Agroforestry 

Centre (ICRAF) for a PhD fellowship and Jomo Kenyatta University of Agriculture 

and Technology for providing study leave. Foremost recognition is given to my 

supervisors: Prof. Catherine Muthuri, Dr. Johannes Dietz, Dr. Peter Mwangi and Dr. 

Ramni Jamnadass for their dedicated support, guidance and motivation. I am thankful 

to Dr. Anja Gassner, Dr. Ric Coe, Dr. Meine van Noordwijk, Dr. Rachmat Mulia and 

Dr. Eike Luedeling for invaluable contributions during project design and data 

analysis. To ICRAF Kisumu technical crew: Tom Ochinga, Joash Mango, Walter 

Adongo, Peter Okoth and Crisanthus Otieno, a special thank you for the excellent 

work during biomass sampling. Also, sincere gratitude to Alfred Gichu (Kenya 

Forestry Service) and George Aertssen (ICRAF) for logistical support during field 

work. I am greatly indebted to Henry, Josephine and Brenda for inestimable support at 

the ICRAF‟s Climate Change Research Unit. To all my friends at ICRAF and Juja 

Bible study group, thanks for genial fellowship and litanies. This study could not have 

taken place without the support of farmers who allowed their trees to be felled.  

Love weighted appreciation to my wife Monicah and son Rei Gian, partners at the 

wonderful family. You give me continuing reason to move on.  

The Grace of God Makes the Difference (I Cor. 15:10). 



v 

 

TABLE OF CONTENTS 

DECLARATION ....................................................................................................................... ii 

DEDICATION .......................................................................................................................... iii 

ACKNOWLEDGEMENT ..................................................................................................... iv 

TABLE OF CONTENTS ........................................................................................................ v 

LIST OF TABLES ................................................................................................................... xi 

LIST OF FIGURES ............................................................................................................... xiii 

LIST OF PLATES ................................................................................................................ xvii 

LIST OF APPENDICE ....................................................................................................... xviii 

ABBREVIATIONS ................................................................................................................ xix 

ABSTRACT ............................................................................................................................. xxi 

CHAPTER ONE ........................................................................................................................ 1 

1.0 GENERAL INTRODUCTION ....................................................................................... 1 

1.1 Background of the study .................................................................................... 1 

1.2 Trees on farms ................................................................................................... 3 

1.3 Biomass production and partitioning ................................................................ 4 

1.4 Biomass estimation ............................................................................................ 5 

1.4.1 Importance of biomass estimation ..................................................................... 5 

1.4.2 Approaches to biomass estimation ..................................................................... 7 

1.4.3 Allometric equations as a tool for biomass estimation ...................................... 8 

1.5 Statement of the problem ................................................................................ 10 



vi 

 

1.6 Justification of the study .................................................................................. 11 

1.7 Objectives ........................................................................................................ 13 

1.8 Research questions .......................................................................................... 13 

1.9 Hypotheses ....................................................................................................... 14 

CHAPTER TWO..................................................................................................................... 15 

2.0          MATERIALS AND METHODS ........................................................................ 15 

2.2 Site description ................................................................................................ 15 

2.3 Sampling design and nomenclature ................................................................ 19 

2.4 Measurements procedures ............................................................................... 20 

2.4.1 Diameter ............................................................................................................ 20 

2.4.2 Height ................................................................................................................ 21 

2.4.3 Crown area ........................................................................................................ 22 

2.4.4 Wood density and carbon content .................................................................... 22 

2.5 Biomass sampling ............................................................................................ 24 

2.5.1 Aboveground biomass ...................................................................................... 24 

2.5.2 Belowground biomass ...................................................................................... 24 

2.5.3 Subsampling and drying ................................................................................... 26 

2.6 Data management, modelling and statistical analysis .................................... 27 

2.6.1 Development and evaluation of allometric equations ..................................... 27 

2.6.2 Evaluation of selected published allometric equations ................................... 31 

 



vii 

 

CHAPTER THREE ................................................................................................................ 34 

3.0          ABOVEGROUND BIOMASS ESTIMATION USING DIAMETER ...... 34 

3.1 Introduction ...................................................................................................... 34 

3.2 Method ............................................................................................................. 35 

3.3 Results .............................................................................................................. 36 

3.3.1 Species distribution and dendrometric relationships ....................................... 36 

3.3.2 Wood density and carbon content .................................................................... 41 

3.3.3 Performance of allometric models developed ................................................. 43 

3.3.4 Performance of existing allometric equations ................................................. 45 

3.3.5 Representative aboveground tree biomass carbon ........................................... 48 

3.4 Discussion ........................................................................................................ 50 

3.4.1 Dendrometric relationships .............................................................................. 50 

3.4.2 Wood density and carbon content .................................................................... 51 

3.4.3 Performance of allometric models developed ................................................. 52 

3.4.4 Suitability of existing equations ....................................................................... 54 

3.4.5 Representative landscape biomass carbon ....................................................... 56 

3.4 Conclusion ....................................................................................................... 57 

CHAPTER FOUR ...................................................................................................................... 58 

4.0         ABOVEGROUND BIOMASS ESTIMATION USING CROWN AREA ............ 58 

4.1 Introduction ...................................................................................................... 58 

4.2 Method ............................................................................................................. 59 



viii 

 

4.3 Results .............................................................................................................. 61 

4.3.1 Biometric relationships ..................................................................................... 61 

4.3.2 Performance crown area equations .................................................................. 62 

4.4 Discussion ........................................................................................................ 67 

4.4.1 Biometric relationships ..................................................................................... 67 

4.4.2 Performance of crown area equations .............................................................. 68 

4.5 Conclusion ....................................................................................................... 70 

CHAPTER FIVE ..................................................................................................................... 71 

5.0          BELOWGROUND AND TOTAL TREE BIOMASS ESTIMATION .... 71 

5.1 Introduction ...................................................................................................... 71 

5.2 Method ............................................................................................................. 73 

5.3 Results .............................................................................................................. 75 

5.3.1 Biometric relationships ..................................................................................... 75 

5.3.2 Root-to-shoot ratios .......................................................................................... 77 

5.3.3 Allometric equations for belowground biomass .............................................. 79 

5.3.4 Allometric equations for total tree biomass ..................................................... 83 

5.3.5  Representative landscape biomass: implication of tree dimensions ............... 85 

5.4 Discussion ........................................................................................................ 87 

5.4.1 Belowground biomass captured by excavation ............................................... 87 

5.4.2 Variability of root-to-shoot ratios .................................................................... 88 

5.4.3 Performance of developed and existing biomass functions ............................ 90 



ix 

 

5.4.4 Equations for estimating total tree biomass ..................................................... 93 

5.5  Conclusion ....................................................................................................... 95 

CHAPTER SIX ........................................................................................................................ 96 

6.0           BIOMASS DYNAMICS FOR DOMINANT EUCALYPTUS .................... 96 

6.1 Introduction ...................................................................................................... 96 

6.2 Method ............................................................................................................. 98 

6.3 Results ............................................................................................................ 100 

6.3.1 Biomass equations ......................................................................................... 100 

6.3.2 Biomass apportionment ................................................................................. 107 

6.4 Discussion ...................................................................................................... 109 

6.4.1 Biomass equations ......................................................................................... 109 

6.3.2 Biomass apportionment ................................................................................. 112 

6.5 Conclusion ..................................................................................................... 114 

CHAPTER SEVEN............................................................................................................... 115 

7.0          FRACTAL BRANCH ANALYSIS .................................................................. 115 

7.1 Introduction .................................................................................................... 115 

7.2 Methods.......................................................................................................... 116 

7.3 Results ............................................................................................................ 118 

7.3.1 Inputs for the FBA model .............................................................................. 118 

7.3.2 Biomass equations ......................................................................................... 121 

7.4 Discussion ...................................................................................................... 127 



x 

 

7.5 Conclusion ..................................................................................................... 130 

CHAPTER EIGHT ............................................................................................................... 132 

8.0          CANOPY COVER AND LEAF AREA INDEX .......................................... 132 

8.1 Introduction .................................................................................................... 132 

8.2 Methods.......................................................................................................... 133 

8.2.1 Setting up of photographic equipment .......................................................... 133 

8.2.2 Image analysis ............................................................................................... 135 

8.3 Results ............................................................................................................ 136 

8.4 Discussion ...................................................................................................... 138 

8.4.1 Canopy cover and effective leaf area index estimates .................................. 138 

8.4.2 Uncertainties in estimating canopy cover and leaf area index ..................... 139 

8.5 Conclusions .................................................................................................... 140 

CHAPTER NINE .................................................................................................................. 142 

9.0          GENERAL CONCLUSIONS AND RECOMMENDATIONS ................ 142 

9.1 General conclusions ....................................................................................... 142 

9.2 Recommendations for future work ............................................................... 146 

REFERENCES ...................................................................................................................... 148 

APPENDICES ........................................................................................................................ 161 

 

  



xi 

 

LIST OF TABLES 

Table 2.1  Biophysical and climatic conditions of the Lower, Middle and Upper 

Yala sites…………………………………………………………….17 

Table 2.2 Allometric relationship between DBH and AGB for selecting suitable 

sample size ………………………………………………………….29 

Table 2.3 Selected published allometric equations for estimating AGB and BGB 

of tropical vegetation………………………………..……………….32 

Table 3.1 Allometric coefficients for estimating AGB and the biomass of stems, 

branches and leaves………………………..…..……………………44 

Table 3.3 Allometric coefficients for estimating AGB using DBH in 

combination with height, wood density and/or crown area…………45 

Table 4.1 Allometric coefficients for estimating AGB using crown area alone or 

crown area in combination with height and/or wood density……….63 

Table 4.2 Allometric coefficients for estimating the biomass of stems, branches 

and leaves.…………….......................................................................64 

Table 5.1 Variability of root-to-shoot ratios across the three sites evaluated….78 

Table 5.2 Allometric coefficients for estimating BGB using AGB, DBH, RCD, 

and DBH in combination with height, and/or wood density………..80 

Table 5.3 Allometric coefficients for estimating TTB using DBH, RCD, and 

DBH in combination with height and/or wood density…………….84 



xii 

 

Table 6.1 Allometric coefficients for estimating AGB, BGB, TTB; the biomass 

of stems, branches and leaves using (a) DBH, and (b) RCD………103  

Table 6.2 Allometric equations for estimating (a) AGB, (b) stem biomass, (c) 

branch biomass using DBH in combination with height, wood density 

and/or crown area…………………………………………………..106 

Table 7.1 Tree attributes and input variable values used to parameterize the FBA 

model. ……………………………………………………………...119 

Table 7.2 Coefficients of linear regression for length-diameter relationships and 

the range length used to parameterize the FBA model for twig, branch 

and wood components from different species……………………..122 

Table 7.2 The accuracy of allometric biomass equations derived from FBA 

model and standard method for estimating AGB…………………..123 

Table 8.1 Canopy cover and leaf area index determined for the Lower, Middle 

and Upper Yala sites in Western Kenya…………..………………..137 

  



xiii 

 

LIST OF FIGURES 

Figure 2.1  The location of the three 10 x 10 km study sites in the Yala River basin 

of Western Kenya……………………………………..........................17 

Figure 3.1 Distribution of harvested and non-harvested tree species measured 

along the River Yala basin.…………………………………………..37 

Figure 3.2 Portions converted to wood scrapings and saw dust during felling of 

trees and partitioning of (a) stem, and (b) branches………..…..…….38 

Figure 3.3 Distribution of crown area, height and DBH for (a) harvested trees, and 

(b) non-harvested trees measured along the River Yala basin………..39 

Figure 3.4 Relationship between DBH and height for (a) harvested, and (b) non-

harvested trees measured across the three sites evaluated………….....40 

Figure 3.5 The relationship between DBH and (a) AGB, and (b) the biomass of 

stem, branches and leaves….……………………….………………...41  

Figure 3.6 Comparison of (a) wood density determined using water displacement 

and disc dimensions, and  (b) wood densities for branches and stem 

determined by coring method………………………………………...43 

Figure 3.7 Comparison of actual biomass harvested and biomass predictions by 

equation 3.1 and selected published equations..………………….….46 

Figure 3.8 Disaggregation of bias across trees of various sizes…………….......47 

Figure 3.9 Distribution of non-harvested trees measured per diameter class and 

their share of estimated biomass………………….……………….…49 



xiv 

 

Figure 4.1 Scatter plots showing the relationship between (a) crown area and 

DBH, and (b) crown area and tree height for harvested trees………...61 

Figure 4.2 Regressions of biomass as a function of crown area for (a) AGB, and 

(b) the biomass of stems, branches and leaves……………………......62 

Figure 4.3 Variation of the predictive accuracy of crown area equations across 

diameter classes ……………………………………..........................66 

Figure 5.1 Regressions of BGB as a function of a) DBH, and b) AGB………...76  

Figure 5.2 Regression of TTB and BGB as a function of (a) RCD, and (b) DBH.77  

Figure 5.3 Scatter plots showing (a) the variation of wood density across trees of 

different sizes, and (b) a direct comparison of root wood density with 

wood density of aboveground parts…………………………….…...77 

Figure 5.4 Variability of RS across (a) AGB, (b) DBH, and (c) RCD…………...79 

Figure 5.5 Comparison between the actual biomass and the biomass predicted by 

allometries developed in this study and published allometries 

recommended for tropical species ……………..………….………….81 

Figure 5.6 Performance of biomass functions developed in this study and 

published biomass functions recommended for tropical species….…82 

Figure 5.7 Accuracy of biomass functions across the three sites evaluated…..….83 

Figure 5.8 Performance of (a) equation 5.10, and (b) equation 5.11 across trees of 

different diameters, and (c) the comparative performance the two 

equations across the three sites …….………………………….……..85 



xv 

 

Figure 5.9 The distribution of (a) non-harvested trees measured according to 

diameter class and their share of estimated BGB……….....................86 

Figure 6.1 Regression of biomass as a function of DBH for (a) AGB, BGB, TTB, 

and (b) the biomass of stems, branches and leaves……………….…101 

Figure 6.2 Relationship between height and DBH for (a) harvested trees and (b) 

non-harvested trees sampled in Middle Yala………….…………….102 

Figure 6.3 Comparisons of biomass predictions by equations developed for 

Eucalyptus and the mixed species equation developed in chapter 3 and 

4 for estimating (a) AGB, and (b) BGB.………………………..…..104 

Figure 6.4 Disaggregation of relative error associated with equations for estimating 

(a) AGB, (b) BGB, (c) TTB, (d) stem biomass, (e) branch biomass and 

(f) leaf biomass using DBH and RCD……………………………..105 

Figure 6.5 Variability of root-to-shoot ratio for individual trees across (a) DBH, 

and (b) RCD..………….…………………………………………...108 

Figure 7.1 Dispersion of the scaling factor and allocation parameter as a function 

of link diameter…………………………………..………………….120 

Figure 7.2 Direct comparisons of actual biomass harvested and biomass predicted 

by equations derived from FBA.……..……..……….........................124 

Figure 7.3 Correlation between actual harvested biomass and the biomass 

predicted by the mixed-species models derived by FBA model and 

standard destructive sampling method..…………….……………….125 



xvi 

 

Figure 7.4 Correlation between actual biomass and the biomass predicted by the 

FBA derived allometry and standard allometric approach for trees 

considered to have comparable branching patterns………………….126 

Figure 8.1 Mean canopy cover and effective leaf area index extracted from photos 

taken in 30 x 30 m plots in the Lower, Middle and Upper Yala…...137 

 

  



xvii 

 

LIST OF PLATES 

Plate 2.1  Measurement of (a) diameter at breast height, (b) root collar diameter, 

and (c) a stump with indentation……………………………….........22 

Plate 8.1 Indicative sampling positions, 10.6 m apart in a 30 x 30 m plot (left) 

and a camera with fisheye lens mounted on a tripod stand (right) for 

taking fisheye photographs.…………………………………………134  

Plate 8.2 Hemispherical photograph (a) before setting the threshold, and (b) 

after manually setting the threshold value ………………………....135 

 

  



xviii 

 

LIST OF APPENDICES 

Appendix 2.1  Schematic representation of field events………………………161  

Appendix 3.1  Cross validation for equation 3.1……………………………...162 

Appendix 5.1  Fraction of root biomass not captured by excavation….………...163 

Appendix 5.2  Cross validation for equation 4.1………………………………..164 

Appendix 5.3  Cross validation for equation 4.2…………………………..….165 

Appendix 5.4  Cross validation for equation 4.3…………………………...…166 

  



xix 

 

ABBREVIATIONS 

AIC   Akaike information criterion 

AGB   Aboveground biomass  

ANOVA Analysis of variance 

BGB   Belowground biomass 

BM   Biomass 

C    Carbon 

CF   Correction factor 

CO2   Carbon dioxide 

CV   Coefficient of variation 

DBH   Diameter at breast height 

EPA   Environmental protection agency 

FAO   Food and agriculture organization of the United Nations 

FBA   Fractal branch analysis 

GHG   Greenhouse gas 

GLA    Gap light analyzer 

GLM   Generalized linear model 

GPS   Global positioning system  

ha    Hectare  

IPCC  Intergovernmental panel on climate change 

ICRAF  World Agroforestry Centre 



xx 

 

JKUAT  Jomo Kenyatta University of Agriculture and Technology 

LAI   Leaf area index 

LAIe   Effective leaf area index  

P    Probability value 

RCD   Root collar diameter 

RS   Root-to-shoot ratio 

RMSE  Root mean square error 

RSE   Residual standard error 

R
2
    Coefficient of determination 

R
2
adj   Adjusted coefficient of determination  

MRV    Measurement, reporting and verification 

REDD  Reducing emissions from deforestation and forest degradation 

REALU  Reducing emissions from all land uses 

SD   Standard deviation 

SE   Standard error 

SEE   Standard error of the estimate 

TTB   Total tree biomass 

p Scaling factor  

q Allocation factor 

  



xxi 

 

ABSTRACT 

Much of the quantification of carbon (C) in trees usually relies on allometric equations, 

which relate different measureable properties of organisms to each other. Because 

biomass inventories are generally conducted to survey standing trees and since 

standing trees cannot be weighed to gauge their mass, allometric equations provide one 

of the only ways for estimating C stocks in standing trees. Assessment of tree biomass 

in agricultural landscapes has remained a great challenge because accurate, reliable and 

cost effective methods for monitoring C storage in trees were lacking. The high 

heterogeneity and diverse management effects on trees in agricultural landscapes limit 

the use of standard allometric equations developed for forests. This study aimed to 

develop allometric equations to establish a valid basis of up-scaling of landscape 

biomass C in agricultural landscapes. Ninety seven trees (diameter at breast height, 

DBH: 3-102 cm) randomly selected across three 100 km
2
 benchmark sites in Western 

Kenya were destructively sampled to determine aboveground (AGB) and belowground 

(BGB) biomass. Allometric equations were developed using standard destructive 

sampling methods and functional branch analysis (FBA). Crown cover and effective 

leaf area index (LAIe) were estimated from hemispherical photographs. The equations 

developed fit the data well with over 95% of the observed variation in biomass 

explained by DBH. Diameter alone provided reliable estimation of biomass with about 

90% accuracy. Published equations that could otherwise be considered appropriate for 



xxii 

 

Western Kenya misjudged AGB and BGB by between 11-22% and 21-35%, 

respectively. FBA-derived allometry for trees with comparable branching form 

produced results similar to estimates from an allometry built through standard 

destructive sampling techniques. Agricultural mosaics of Western Kenya were 

estimated to hold about 22 t C ha
-1

 in standing trees; with 17 (standard error, SE 

0.02) t C ha
-1

 in AGB of which leaves, branches and stem constitute 4, 39 and 57%, 

respectively; while the root system stock about 5 (SE 0.01) t C ha
-1

. The mean canopy 

cover (and standard deviation, SD) for the three sites evaluated was 45.3% (SD 18.8), 

55.1% (SD 23.6) and 40.8% (SD 18.6) while mean LAIe was 0.65 (SD 0.83), 1.00 (SD 

0.83), and 0.59 (SD 0.53) for Lower, Middle and Upper Yala, respectively. The study 

confirms that DBH serves as a more straightforward and robust proxy for estimating 

tree biomass in complex agricultural landscape mosaics. Advanced FBA techniques 

have great potential as a non-destructive approach for generating species-specific 

allometric equations for estimating tree C stocks and thus reducing measurement effort 

and impact. Equations developed will find greater application for programs interested 

in measurement, monitoring, management and up-scaling of tree C stocks to a 

landscape level.  

Keywords: Agricultural landscapes, Allometric equations, Carbon stocks, Functional 

branch analysis, Hemispherical photography 
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CHAPTER ONE 

1.0  GENERAL INTRODUCTION  

1.1 Background of the study 

Climate change has emerged as a major hazard to progress in developing countries, 

largely threatening food security, regional stability and ecosystem integrity. Climatic 

changes are attributed to variations in atmospheric levels of greenhouse gases (GHGs). 

The primary agent of climate change is Carbon (iv) dioxide (CO2), which constitutes 

the lion share, 60% of the GHG emissions, (IPCC, 2006). Other GHGs linked to 

climate change include methane, nitrous oxide and reactive gases such as sulphur 

dioxide, nitrogen oxide, carbon monoxide and hydro-carbons. While most of the 

increase in atmospheric levels of CO2 is attributed to a rise in burning fossil fuel, land 

use and land use change represent leading anthropogenic processes that release CO2 to 

the atmosphere (IPCC, 2003).  

Agricultural ecosystems represent an important component in C sequestration, defined 

in this study as the capture and storage of C that would otherwise be emitted to and 

remain in the atmosphere as CO2 (Henry et al., 2010). Trees in agro-ecosystems store 

C through fixation of atmospheric CO2 into biomass, some of which is indirectly 

sequestered as soil organic C during putrefaction (Nair et al., 2009). In addition, trees 

on farms alleviate the pressure on natural forests by supplying timber and fuelwood, 

which would otherwise be sourced from forests (Albrecht and Kandji, 2003). Although 
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woody vegetation play the important role of a C sink, their disturbance by natural or 

human activities lead to release of C into the atmosphere (IPCC, 2003). Hence, 

initiatives such as forest protection, afforestation and reforestation are actively being 

undertaken to reduce CO2 emissions into the atmosphere and absorb atmospheric CO2 

into long-lived vegetation (Verbist et al., 2011). In addition, trees are widely being 

included in farmland to expand existing C sinks, conserve available C pools and 

substitute fossil fuel with green energy (Velarde et al., 2010). 

Strategies for lowering atmospheric CO2 have evolved from reducing emissions from 

deforestation (RED), to include reduced forest deforestation and degradation (REDD) 

and finally enhancement of forest stocks, REDD+ (Verbist et al., 2011). Currently, a 

whole landscape approach (REDD++), also known as reducing emissions from all land 

uses (REALU) is favored. REALU includes activities that help to conserve biomass as 

well as enhance, fix and store C in various land uses, in addition to forests (Velarde et 

al., 2010). These mitigation mechanisms have the potential for greater emission 

reduction and projects involved could benefit greatly from C sequestered. Therefore, it 

is essential to devise ways of accurately measuring tree C stocks in agricultural 

landscapes, which is a prerequisite to establishing payment schemes for C 

sequestration (Nair et al., 2009) and also a precondition for the United Nations 

framework convention on climate change member states to develop, publish and 

periodically update national GHG inventories of emissions by sources and removals by 

sinks (IPCC, 2006). 
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1.2 Trees on farms 

Kenyan smallholder farmers have a strong tradition of actively managing a variety of 

multipurpose trees on farms (Kuyah, 2008). In Western Kenya, tree planting is mainly 

farm-based with a mix of exotic and indigenous trees dominating the landscape. 

Although trees were previously planted separate from crops, most trees are currently 

planted on farms, along boundaries or simultaneously with crops, depending on land 

size and/or the utility of the species (Kituyi et al., 2001). Boundary planting is adopted 

to minimize competition with crops while competitive trees such as Eucalyptus spp are 

often planted in woodlots for households with large land sizes (Kuyah, 2008). When 

integrating trees with crops, farmers select trees that can grow with crops without 

reducing yields, yet still providing social, economic and environmental services, which 

would otherwise require heavy financial investment (Jamnadass et al., 2011).  

In Kenya, the majority of timber and non-timber wood products are obtained from 

farm estates, presenting an opportunity for farmers to have access to additional income 

from their land (FAO, 2011). This trend is further spurred by the increasing need for 

woody biomass as feed stocks for bio-energy (Kiplagat et al., 2011). Therefore, many 

smallholder farmers plant multipurpose trees that complement other enterprise on the 

farm. Despite the effort to increase tree cover in Kenyan farms, the demand for wood 

and non-wood tree products in the country outstrips their supply, largely due to a 

rapidly increasing human population and depletion of their natural sources (Kiplagat et 

al., 2011). In Western Kenya, low agricultural yields and high human population have 
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caused degradation of natural forests and conversion of marginal lands into agriculture 

(Shepherd and Soule, 1998). To meet the high demand for tree products and services, 

the region is increasingly focusing on conserving and also increasing trees in the 

landscape. Considerable success has been achieved through introduction of fast 

growing tree species (Kuyah, 2008) and adoption of agroforestry technologies 

(Jamnadass et al., 2011). Enhanced integration of trees in farmlands has also been 

promoted by the opportunity to receive payments from C sequestration (Nair et al., 

2009). 

1.3 Biomass production and partitioning 

Climatic factors such as solar radiation, temperature and water availability affect plant 

growth. These factors, together with nutrient availability, genetics and tree age 

influence biomass production and partitioning in trees (Keith et al., 2000). In the semi-

arid tropics, water availability is a major factor that limits plant growth and that 

determines the natural distribution and productivity of trees (Kuyah, 2008). Plants 

respond to water shortage by reducing growth of shoot and investing more in root 

production (Gower et al., 1992). Conversely, biomass production generally increases 

in response to increase in rainfall and temperature unless other limiting factors exist. 

Trees require nutrients for growth and development. Most tropical soils contain limited 

supplies of nutrients due to degradation and intense agricultural use (Shepherd and 

Soule, 1998). Hence, biomass production and partitioning is affected differently by 

nutrient elements, depending on the relative limitation of the element and its function 
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(Keith et al., 2000). Nutrient deficiency retards growth and affects the proportion of 

biomass in various components through shifting partitioning between foliage and fine 

roots (Gower et al., 1992). High nutrient availability results in increased growth rate, 

increased canopy components and high shoot-to-root ratio (Keith et al., 2000).  

Genetic factors influence the yield potential and the growth form of trees, while tree 

age determines total biomass as well as allocation and distribution of biomass across 

different components for individual trees and stands of the same species. Total above- 

and below-ground biomass accumulates throughout the development of individual 

trees and stands; however, partitioning among components changes with age (Gower et 

al., 1992). As trees age, they allocate proportionally less biomass to leaves and 

branches and more to the stem (Zewdie et al., 2009). When estimating biomass using 

allometric equations, the relationship developed will thus vary in response to these and 

many other factors (Chave et al., 2004). 

1.4 Biomass estimation 

1.4.1 Importance of biomass estimation 

The dramatic decline in forest cover and new opportunities for C credits has raised 

interest in measuring and monitoring C pools and fluxes in various land use types. 

These measurements aim to predict future changes in C concentration and to develop 

C management strategies (Eamus et al., 2000). While farmers in developing countries 

are one of the world‟s largest and most efficient producers of sequestered C, at present 

there is no reliable way to calculate or verify how much C their activities remove from 
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the atmosphere. Developing a quick and reliable method to predict and account for the 

amount of C stored in the landscape is therefore essential if individuals or communities 

are to benefit from C markets by growing trees on their farms. 

Approximately 87% of agriculturally dominated landscapes in sub-Saharan Africa 

have tree cover >10% (Zomer et al., 2009). In Western Kenya, trees represent the most 

important aboveground C pool of perennial plants growing on-farm (Henry et al., 

2009). Assessing biomass in such landscape mosaics is crucial for sustainable 

management of woody vegetation. When trees are managed as a source of renewable 

energy, one needs to know how much biomass is available at a given time to be able to 

determine how much fuel wood is available for use.  

Assessing biomass in agricultural landscapes has gained more attention because of the 

role of trees in the global C cycle (Albrecht and Kandji, 2003). Periodic measurement 

of biomass accumulation can be used to establish the potential of agroforestry systems 

to sequester C. One can further determine the production potential and/or suitability of 

a particular species for a given purpose, such as sustainable charcoal production 

(Okello et al., 2001). Measurement approaches designed to predict harvest yield help 

to assess biomass loss or accumulation over time. This makes biomass estimation an 

essential component of monitoring C sequestration (Eamus et al., 2000). By 

establishing the rate of biomass production, one can determine C sequestration 

potential of a particular species, allowing the valuation of the capacity of trees in 

agricultural landscapes to offset anthropogenic C emissions. 
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1.4.2 Approaches to biomass estimation 

The contribution of trees in mitigating climate change has led to increased efforts in 

refining methods for estimating AGB and BGB. Accurate and reliable estimation of 

biomass in agro-ecosystems is desired to meet measuring, reporting and verifying 

(MRV) requirements for C accounting for any broader based approaches including 

also anthropogenically modified landscapes. Tree biomass can be estimated using 

direct or indirect approaches. Direct method involves cutting and weighing trees in the 

field and represents the most accurate way to quantify biomass (Brown, 1997). 

However, harvesting a sufficient number of trees to represent the size and species 

distribution in an ecosystem is time consuming, destructive, labour intensive, 

expensive and difficult to implement in remote areas (Brown, 2002). Also, the number 

of trees that would have to be sampled is large, leading to loss of tree diversity and its 

associated benefits. Destructive harvesting of trees in long-term studies and 

reforestation projects is therefore not sustainable, restricting the approach to small 

areas and small sample sizes. To circumvent destructive sampling and its attendant 

challenges, indirect approaches have been devised. Indirect methods include use of 

allometric relationships (Brown, 1997), functional branch analysis (van Noordwijk and 

Mulia, 2002), photographic techniques (Jonckheere et al., 2004) and remote sensing 

(Gibbs et al., 2007). Although indirect methods have many advantages over direct 

methods, field measurements are still indispensable, providing ground data for 

validating estimates from indirect approaches.  
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1.4.3 Allometric equations as a tool for biomass estimation 

Much of the assessment of aboveground C stocks in trees usually relies on allometric 

equations through conversion of easy-to-measure parameters, such as diameter at 

breast height (DBH) to biomass. Measureable parameters such as DBH and/or tree 

height are regressed against harvested dry weight to yield allometric equations. 

Equations developed are then used to convert simple physical parameters to biomass. 

The sum of all trees within a plot is obtained to estimate plot-level biomass. Provided 

statistical representativeness, such plot-level biomass can then be up-scaled to 

landscape estimates. Carbon in measured trees is obtained by multiplying biomass 

estimate by the C fraction of biomass. The default C fraction value for AGB in tropical 

species recommended by IPCC (2006) is 0.47. As slight variability of C fractions exist 

between species or tree compartments, projects may use the IPCC default value or may 

choose to determine the actual C concentration in their samples by element analysis.  

Allometric equations describing natural relationships are not always linear. Different 

models are fitted to the data until the model that best describes a particular species or 

environmental condition is obtained. This may require logarithmic transformations of 

the data in order to homogenize the variance over the entire range of the sample data. 

However, the logarithmic transformation can lead to a bias towards underestimating 

biomass (Sprugel, 1983). The bias is accounted for by multiplying the estimate by a 

correction factor, CF (Chave et al., 2005).  
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Allometric power function equations are commonly used in biomass estimation, 

although some studies have reported the use of polynomial equations (Henry et al., 

2011). For this study, the power function model was resorted to, based on tree 

geometry and function, and the fact that the power function equations remain 

reasonable for small extrapolations outside the calibration range, thus providing a more 

natural scaling than the polynomial equations. Furthermore, the polynomial equations 

tend to have 3 or 4 parameters, which have no direct biological interpretation, while 

those of the power law have (Ketterings et al., 2001). Studies have reported power 

function relationships that relate tree biomass with structural parameters like DBH or 

DBH in combination with height and/or wood density (Brown, 1997; Chave et al., 

2005). 

1.4.4 Limitations of existing allometric equations 

The quality of the allometric equation depends on the empirical data used. A major 

limitation to allometry development for agricultural landscapes is the non-

representativeness of the data from which the equations are constructed (Brown, 1997). 

When allometric equations are constructed from a small sample, they are unlikely to be 

truly representative of the landscape population in terms of size and species 

distribution. In most cases, larger diameter trees are often underrepresented and only 

few species of interest are captured (Eamus et al., 2000). Given that farmers manage 

trees through selective harvesting of stems, lopping of branches or maintaining a 

variety of species on farms, the form and size of these trees is likely to be different 
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from that in a forest or single-species stand. Hence most equations are likely to 

misjudge biomass if applied to agricultural landscapes without empirical validation.  

Published equations used for tropical species are purely constructed for estimating 

AGB e.g. Brown (1997) or BGB e.g. Mokany et al. ( 2006). Total tree biomass (TTB) 

is then obtained by adding up estimates from AGB and BGB equations. A common 

problem with this approach is that allometric equations show different relationships for 

different parts of a tree, and each equation estimates biomass with some uncertainty. 

Aggregating estimates from different equations to obtain TTB may therefore yield 

poor estimates due to associated errors. In addition, estimates derived from such 

equations may not be accurate because of the “species specific” or “generalized” 

nature of the equations used (Nair et al., 2009). This calls for empirically validated 

equations for estimating TTB without the need to determine ABG or BGB. Because of 

several limitations with allometry development in Eastern Africa, and due to the 

changing nature of allometric relationship with location, land cover type and 

management practices, there is need to develop allometries for trees with differing age, 

planting arrangements, management strategies and from a wider geographic area.  

1.5 Statement of the problem 

While allometric relations have been developed in conventional areas such as forests, 

estimation of biomass in agricultural landscapes had remained a great challenge due to 

lack of accurate, reliable and cost effective methods for monitoring their C storage in 

trees. The high spatial and temporal heterogeneity of agricultural landscapes, 
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particularly, the heterogeneity of trees arising from natural differences in species 

composition and alteration of their structural form by management practices, limit the 

application of standard allometries developed for forests, such as those cited by the 

IPCC (2006). Therefore, those marginal landscapes have long been neglected both in 

their emissions and also their C stocks and sequestration potentials.  

There exist few allometric equations in East Africa developed for particular, rather 

homogenous systems such as forests, and are mainly species specific (Henry et al., 

2011). Most of these equations were derived from a limited number of tree sizes, 

smaller study sites and/or are restricted to one species in a given region and therefore 

have limited application in multi-species landscapes with variable characteristics such 

as those found in complex agricultural mosaics of Western Kenya. There are also 

global equations commonly used in the absence of species specific equations (Brown, 

1997; Chave et al., 2005). However, both the local equations developed for East Africa 

and broadly derived global equations have not been validated for the region and their 

compatibility with agricultural mosaics is limited as trees in these landscapes are often 

managed and rarely mono-specific. 

1.6 Justification of the study 

The international debate on REDD++ has called for strict carbon MRV methods. All 

subsequent mechanisms aiming at conserving C stocks in various land use types have 

included agricultural landscapes, which have led to increased interest in assessing C 

under such land use (Verbist et al., 2011). REDD++ has emerged as an important 
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broad-based approach to climate change mitigation with targets of greater emission 

reductions, reduction of leakage and increased benefits for local people (Velarde et al., 

2010). The success of this approach hinges upon robust, reliable and efficient 

procedures being available for evaluating C stocks across the whole landscape. Since 

smallholder farmers in most developing countries integrate trees in their farms, they 

are likely to benefit economically if the C sequestered by trees in their farms is sold in 

C markets (Nair et al., 2009). However, lack of efficient methods for monitoring C 

storage in agricultural landscapes might constrain the success of such C offset 

programs. 

Allometric equations developed in this study will improve the reliability of future 

biomass estimates in Western Kenya and serve as a vital tool for MRV of forest and 

agroforestry C pool sizes in systems where destructive sampling is not recommended. 

These new allometric equations are a valuable addition to the AgroforesTree Database 

maintained by ICRAF to enable future C offset project managers to measure the 

biomass and C in common agroforestry trees. Guidelines established in this study will 

allow for better and more efficient assessment of landscape C and a robust way of 

assessing C on the ground for validating spatial up-scaling methods such as remote 

sensing. 
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1.7 Objectives 

The overall objective of the study was to develop allometric equations to establish a 

valid basis for up-scaling landscape scale tree biomass in agricultural landscapes in 

Western Kenya. The specific objectives of the study were to: 

i. Develop robust allometric equations for estimating aboveground biomass using 

diameter at breast height as the primary predictor variable; 

ii. Develop reliable allometric equations for estimating aboveground biomass 

using crown area as the primary predictor variable; 

iii. Develop improved allometric equations and root-shoot ratios for estimating 

belowground biomass; 

iv. Develop allometric equations for estimating the biomass of Eucalyptus spp 

found in agricultural landscapes in Kakamega, Western Kenya; 

v. Derive scaling rules for tree biomass estimation using fractal branch analysis;  

vi. Determine canopy cover and leaf area index for agricultural landscapes in 

Western Kenya using canopy hemispherical photographs. 

1.8 Research questions 

The study addressed the following research questions: 

i. How accurate is diameter at breast height as a predictor of aboveground 

biomass of trees in agricultural landscapes?  

ii. How suitable is crown area as a predictor of aboveground biomass of trees in 

agricultural landscapes? 
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iii. How accurate are allometric relationships for belowground biomass over root-

to-shoot ratios? 

iv. How variable are biomass estimates derived from species-specific and mixed 

species equations? 

v. Why do allometric biomass equations differ between tree species?  

vi. Can hemispherical photography be used as a ground-based tool for estimating 

canopy cover and leaf area index in agricultural landscapes? 

1.9 Hypotheses 

The study hypothesized that: 

i. Diameter at breast height is the most suitable parameter for the prediction of 

above- and below-ground biomass of trees in agricultural landscapes; 

ii. Fractal branch analysis provides a transparent non-destructive tool for 

derivation of allometric coefficients for biomass estimation; 

iii. Hemispherical photography is an effective non-destructive tool for estimating 

canopy cover and leaf area index in agricultural landscapes.  

  



15 

 

CHAPTER TWO 

2.0 MATERIALS AND METHODS 

2.1 Introduction 

This chapter introduces the study site, describes the sampling approach, provides a 

detailed account of measurements taken and explains how individual measurements 

were performed. The relevance of the sampling approach and the significance of each 

measurement to the objective of the study are also explained. Measurement of 

diameters, tree height, crown area and the approaches used to estimate wood density 

and C content are described in section 2.4. Destructive sampling to determine above- 

and below-ground fresh weights and subsequent sub-sampling to determine dry 

weights is explained in section 2.5. Model development and evaluation is explained in 

section 2.6 while description of published models evaluated is provided in section 2.7. 

2.2 Site description 

The study was conducted between January and August 2010 in three 100 km
2
 sentinel 

sites (Lower, Middle and Upper Yala) along the Yala River basin in Western Kenya 

(Figure 2.1). The sites were previously used in the Western Kenya integrated 

ecosystem management project, aimed at improving productivity and sustainability of 

land use systems in the Yala River basin (Boye et al., 2008). The Yala River basin 

covers an area of 3351 km
2
 and drains into the Winam Gulf in Lake Victoria (Boye et 

al., 2008). The basin covers an altitudinal gradient of 1200-2200 m above sea level and 
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receives a mean daily maximum temperature of 27.4 °C and mean daily minimum of 

12 °C. 

 

Figure 2.1 The location of the three 10 x 10 km study sites (Lower, Middle and Upper Yala) investigated 

in the Yala River basin of Western Kenya. 

The basin receives annual rainfall of about 1400-1800 mm, decreasing westwards and 

following a bimodal distribution (i.e. long rains from March to July and short rains 

from August to November), which allows two cropping seasons per year. Dominant 

soil types in Western Kenya include Acrisols, Ferralsols and Nitisols (Jaetzold and 

Schmidt, 1982). The soils are characterized by a good physical structure but low 

nutrient reserves due to prolonged weathering and intense agricultural use (Shepherd 

and Soule, 1998). Generally, the landscape is gently undulating in the East and fairly 

flat in the West, with a few scattered groups of hills (Jaetzold and Schmidt, 1982). Site 



17 

 

specific information on biophysical and climatic conditions of each site is summarized 

in Table 2.1. 

Table 2.1 Biophysical and climatic conditions of the Lower, Middle and Upper Yala. Soil properties 

captured to a depth of 15 cm (Boye et al., 2008). 

Attribute Lower Yala Middle Yala Upper Yala 

Longitude 34°28'19.62"E 34°49'13.01"E 35°20'14.60"E 

Latitude 0°1'12.33"S 0°7'51.57"N 0°17'27.14"N 

Altitude, range (m) 1200 - 1450 1430-1720 2100-2400 

Rainfall, mean annual (mm) 1479 1950 1028 

Temperature, mean annual (°C) 21.9 20.5 16.7 

Slope, average (%) 7.6 12.8 2.3 

Soil texture (%)    

Clay 8 46 24.6 

Clay loam 45 15 - 

Sandy loam  7 - 0.5 

Silty loam - 6 0.5 

Silty clay  7 32 74.3 

Diverse land use systems exist in Western Kenya, ranging from subsistence 

smallholder farms in Lower and Middle Yala to more cash-crop oriented farms in 

Upper Yala. Due to high population and sub-division of farms according to traditional 

heritage systems, average farms in Western Kenya are small, ranging from 0.2 ha in 
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Middle Yala to 0.8 ha in Lower Yala; however, large parcels of land exist in Upper 

Yala (Boye et al., 2008). Woody vegetation form part of a composite agricultural 

landscape varying from individual free standing trees to pockets of stands that consist 

of indigenous and exotic forms managed in different ways (Glenday, 2006). Trees and 

shrubs are grown around the homestead, in woodlots, cropland and also along farm 

boundaries (Henry et al., 2009). Woodlots occur mainly as small, mono-specific 

clusters of cultivated trees in Middle Yala (usually Eucalyptus spp) and Upper Yala 

(mainly Acacia mearnsii). Considerable areas in Lower Yala have bushes on farms 

with indigenous shrubs and naturalized exotic species.  

The three sites chosen represent the natural gradient of the Yala River basin in terms of 

elevation, slope, rainfall regimes and land use. The Lower Yala is located in Siaya and 

Kisumu Counties. The site is characterized by undulating hills, medium to steep 

slopes, plateaus and valley floors draining directly into the Yala River (Boye et al., 

2008). Larger portions of woody grassland in Lower Yala have been converted to 

agriculture with little thicket and woody cover remaining. The major crop grown is 

maize and in some areas maize in combination with sweet potatoes and cassava. The 

Middle Yala site is located in Vihiga and partly in Kakamega County. The site hosts 

the Kaimosi forest and a part of the Kakamega forest reserve. The landscape consists 

of mountainous highlands with numerous small streams and clusters of wetlands (Boye 

et al., 2008). Tea is the major cash crop in this area while maize, beans, banana and 

sweet potatoes are grown for subsistence. The area has relatively ample tree cover with 

eucalyptus species dominating the landscape. The Upper Yala is located in Uasin 
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Gishu County, towards the source of the Yala River. It is characterized by medium 

gradient hills, shallow depressions, wetlands and flood plains with small permanent 

streams (Boye et al., 2008). The area is mainly under maize production with smaller 

portions of wheat and few shrubs and trees in the landscape. 

2.3 Sampling design and nomenclature 

The sentinel sites chosen consist of 10 x 10 km benchmark sites, each divided into 16 

sub-clusters of 2.5 x 2.5 km with 10 plots in each cluster. For this study, three plots of 

30 x 30 m (0.09 ha) each were randomly selected in each cluster for biomass sampling. 

A randomized selection of the plots ensured coverage of the entire catchment and also 

the representative mix of tree species in the area. Sampling biomass across the three 

sites ensured that a wider range of species and trees of identical species along an 

altitudinal gradient were captured. 

Sixty percent of the measurements were collected in the Middle Yala while the Lower 

and Upper Yala contributed 20% of the harvested trees each; an approach adopted 

based on relative abundance of trees per block. Trees were stratified by size into 6 

diameter classes of 2.5-10, 10.1-20, 20.1-30, 30.1- 40, 40.1- 60 and >60 cm to achieve 

an adequate spread of diameter classes in the sample. In each diameter class, 12 

individual trees were randomly selected for harvesting resulting in a total of 72 trees. 

Due to the few number of larger trees (DBH >60 cm) in selected plots, additional trees 

of the same diameter were semi-randomly sourced from remaining plots within the 

blocks. An additional 25 trees were randomly harvested in the Middle Yala for adding 
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to Eucalyptus trees among the 72 harvested to develop equations specific to dominant 

Eucalyptus spp in the area. All trees with DBH >2.5 cm within each plot sampled were 

identified and measured. A total of 825 trees were non-destructively measured across 

all the three sites for estimating representative biomass C. 

Plots were geo-referenced and the farmers‟ administrative location, sub-location, 

village and contact adequately described to facilitate follow-up activities. The global 

positioning system (GPS) coordinates of the plot center were located using GPSMAP 

60CSx (Garmin International Inc., USA) and recorded according to the nomenclature 

L1C1P1, MC1P1 and UC1P1 for Lower Yala cluster 1 plot 1, Middle Yala cluster 1 

plot 1 and Upper Yala cluster 1 plot 1, respectively. From the center identified by the 

GPS device, a 30 x 30 m plot was established and marked with a placard. Target trees 

were numbered following the plot nomenclature with a numerated initial T (T1…Tn). 

The species name was recorded and where scientific names could not be attributed in 

the field, a sample labeled with a local name was retained for later identification. The 

influence of management through pruning and coppicing was recorded. 

2.4 Measurements procedures 

2.4.1 Diameter 

Diameter at breast height is commonly used for biomass estimation because it can 

easily be measured with high accuracy, repetitively, and generally follows commonly 

acknowledged forestry conventions (West, 2009). Diameter at breast height was 
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measured with diameter tapes. Prior to measurements, tree trunks were cleared of dirt 

and other alien phyto-material such as lichens or moss. Measurements were taken at 

1.3 m above the ground level with the tape held tightly and horizontally to the tree axis 

(Plate 2.1). Conventional methods of DBH estimation were used on trees with 

anomalies. Root collar diameter (RCD), also known as basal diameter was measured 

just above the onset of roots, approximately 15 cm above the soil level using a caliper 

or diameter tape as appropriate. 

   

Plate 2.1 Measurement of (a) diameter at breast height, (b) root collar diameter, and (c) a stump with 

indentation. Measurements taken along the depressions overestimated tree size. 

2.4.2 Height 

Tree height can serve as an additional predictor variable in support of DBH. Total tree 

height i.e. the vertical distance from the base of the tree to the uppermost point was 

determined in-situ by a hypsometer (Vertex III and Transponder T3, Haglöf, Sweden) 

according the user manual prior to felling each tree. The measurement was then 

repeated for all target trees. The average height of multiple-stem trees was calculated 

as a simple arithmetic mean of the heights of all stems. After cutting the tree, tree 

height was confirmed with a 50 m tape measure. 

a) b) c) 
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2.4.3 Crown area 

Crown area can be detected and quantified automatically from high resolution satellite 

imagery, making it a suitable parameter for linking ground based measurements to 

large scale remotely sensed information. To determine the crown area of an individual 

tree projected onto the ground below it, the largest extension of the crown was 

identified visually and a clinometer (Suunto Clinometer, PM-1520) with percent scale 

used to locate the position vertically below the crown edge for all crowns. Crown 

diameter was measured crosswise with measuring tape, the largest diameter (l) and the 

diameter perpendicular to it (w). Crown area (ca) was calculated assuming an elliptical 

crown shape, )}2/()2/{( wlca  . 

2.4.4 Wood density and carbon content 

Wood density has been reported to be a valuable supporting parameter for biomass 

estimation particularly where high species diversity with a large range of wood 

densities exist (Basuki et al., 2009). Three methods (coring, water displacement and 

measured disc dimensions) were used to estimate wood density of sampled trees. 

Using the coring method, samples were collected by coring a depth approximately the 

radius of the stem at DBH, radius of the main branches and radius of the main roots 

using a carpenter‟s awl and a 2.5 cm bit. Larger stems, branches and roots were cored 

to the length of the bit, 20 cm. Wood chips were collected from the hole with a spatula 

and their fresh weight determined using a top pan electronic scale 300±0.1 g (TSA 

series, Avery Berkel Ltd.). Wood density was then determined as the ratio of dry 
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weight of the cored material to volume of the core; where volume (v) was calculated 

from the radius (r) and depth (h) of the core: hrv  2 . 

A disc, about 2 cm thick was cut from the main branches and roots for each tree 

sampled for determination of its volume by immersion and measurement of disc 

dimensions. A calibrated container capable of holding the sample was filled with water 

to a noted mark and the sample carefully sunk into the water with a needle without 

touching sides or bottom. The volume of the displaced water equals the sample‟s 

volume. The thickness (l) and diameter (d) of the same disc were measured crosswise 

with a caliper. The sample volume (v) was calculated as ldv  )4/( 2 , assuming a 

regular cylindrical shape. Oven-dry weight of the same samples was determined after 

drying it to a constant weight in a well-ventilated oven at 105 °C for 24 hours. 

The C concentration of biomass for individual harvested trees was determined by 

element analysis of subsamples cored at breast height. Subsamples were ground to fine 

powder, sieved using a 0.5 mm sieve and stored in zip lock bags. Approximately 2 mg 

of each sample were placed in tin capsules (Analytical Technologies Inc., Valencia, 

CA, USA) then analyzed for C using a CN-analyzer (Thermo-Quest Flash EA1112) 

according to manufacturer‟s protocol. 
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2.5 Biomass sampling 

2.5.1 Aboveground biomass 

The direction of felling trees was determined by examining the inclination of the target 

tree and the surrounding field. Target trees were cut at the lowest point possible using a 

chain saw (Husqvarna AB, Sweden) for larger trees, DBH >10 cm and a machete for 

smaller trees. A strong rope was used to guide trees to the correct falling direction; a 

tractor was used to pull large trees in order to minimize possible damage of private 

property. Felled trees were separated into stem (main trunk of the tree from the base to 

the top), branches (lateral wood arising from the stem together with twigs) and foliage 

(leaves). A flat and solid surface was prepared to provide a level ground for the scale 

in order to ensure accurate measurements. The stem and larger branches were 

sectioned into weighable pieces, <300 kg and weighed on an electronic bench scale 

(AWD120 Avery weight-tronix Ltd., USA) in the field (±0.1 kg). The weight of the 

portion converted to wood scrapings and saw dust during partitioning of the stem was 

calculated from volume of the chain saw gap multiplied by the wood density calculated 

from the cored material as described in section 2.4.4. Small branches were bundled 

together and leaves collected in large tared bags for weighing in the field. 

2.5.2 Belowground biomass 

The whole root system within a radius of 2 m from the edge of the stump and a depth 

of up to 2 m was unearthed to remove the stump and all coarse roots (>2 cm diameter). 
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For two trees where permission was not granted to uproot the whole system due to the 

presence of other valuable trees within 2 m, a quarter section of the root system within 

the same radius and depth was excavated. The proximal and distal diameters of all 

coarse roots excavated were measured using calipers for later estimation of biomass of 

unexcavated roots. In some cases it was not possible to capture the whole root at the 

2 m length; where roots intersected or intertwined, they were cut to allow for 

excavation. In this case, the diameters of the section removed from the stump were 

measured. Soil embedded in the stump joints and on root surfaces was removed. 

Stumps from larger trees were sectioned into practically weighable pieces, <300 kg. 

Small root pieces and retrievable sizeable wood chips from the chopping with machete 

were placed in tared sacks and weighed. 

The biomass of unexcavated roots was determined by allometric equations relating the 

dry weights of excavated root segments to their proximal and distal diameters, 

assuming that root biomass follows a power law for allometric scaling (van Noordwijk 

and Mulia, 2002). Equations were then fitted with a and b parameter that best matched 

calculated root biomass (BMroot), assuming it represents })(){( 21
bb

root ddaBM  , 

where d1 is the initial diameter while d2 is the diameter at the cut end, about 2 m away 

from the stem base. The log version was fitted with ordinary least squares to allow for 

increasing variance with diameters: errorddaBM bb
root  })()log{()log()log( 21 . The 

missing root biomass was calculated as, b
root daBM )( 2 . The sum of the missing root 

biomass over all roots was determined and expressed as fraction of the calculated 
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biomass to estimate the proportion of root biomass that remained unmeasured. The 

procedure was repeated to determine species specific bias estimates. The estimated 

missing biomass for each root was added to the respective tree. 

2.5.3 Subsampling and drying 

Representative portions (subsamples) were taken from the stems, branches, leaves and 

roots for fresh weight determination using a 3000 g scale (±0.1 g) in the field. One to 

two discs of a freshly felled tree, 2 cm thick, were taken around (i.e. just above and 

below) breast height. Three discs, 2 cm thick, were taken along the lower, middle and 

upper end of the branch to account for variation in wood density along the branch. 

About 100-150 g of leaves was collected in tared sample bags. 

Subsamples were stored in labeled sample bags and transported to the laboratory for 

dry weight determination. Larger subsamples were broken into sizes to fit the oven and 

labeled individually. Subsamples were oven dried at 105 °C for 24 hours as no further 

weight loss occurred beyond that point. However, larger subsamples that showed a 

slight decrease in weight were returned into the oven for a further 12 hours. 

Component biomass was calculated by multiplying subsample dry-to-green weight 

ratio with component fresh weight. Total AGB was obtained by adding up the biomass 

of leaves, branches and stems while TTB was obtained by adding up AGB and BGB. 
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2.6 Data management, modelling and statistical analysis 

Field data were recorded on data sheets prepared before field activities and adapted 

during field work to capture tree size and biomass measurements. Field and laboratory 

data were transferred to excel workbook and the raw data screened for outliers in 

scatter plots. The scatter plots also assisted in visually assessing the relationships 

between dependent and independent variables. Data analysis was carried out in Genstat 

12
th

 Edition (VSN International Ltd.) while graphs were produced in SigmaPlot 

version 11 (Systat Software Inc.).  

2.6.1 Development and evaluation of allometric equations 

Raw data were transformed to stabilize the variance and generally make the data 

normally distributed for analysis and modeling. Transformation of data introduces 

error which was commonly corrected by multiplying the estimate by a CF depending 

on the residual standard error (RSE) of the regression procedure (Sprugel, 1983). The 

CF was determined as )exp(
2

2SEECF  where SEE is the standard error (SE) of the 

estimate of the regression (Sprugel, 1983). A generalized linear model (GLM) with 

gamma distribution and log link function was used (in chapters three, five and six) to 

avoid the problem of back transformation. GLM was adopted after determining that 

the relationship of standard deviation (SD) and mean is one in which SD is 

proportional to mean, or the variance is proportional to the square of the mean. 
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Allometric power function equations, baXY  and their linear equivalents,

)ln()ln( XbaY   were used to predict biomass (Y) from independent variables (X). 

In cases where the data did not meet the preconditions for using GLM (chapter four), 

data were transformed using the natural logarithm to normalize and linearize them. 

Logarithmic equations were developed as )ln()ln( XbaY   then back-transformed to 

a power function form, baXY   for estimation of biomass. The anti-log of the 

intercept of the equations was multiplied by a CF in order to account for bias 

introduced by log transformation of the data.  

The optimal operational sample size was determined by assessing the model fit of 

equations developed with samples of 66, 60, 54 and 48 trees; with 6, 12, 18 and 

24 trees held out of the regression sample for validation. Table 2.2 shows allometric 

coefficients, R
2
, RSE and model bias used in selecting the best sample size for 

equation. A sample size (of 66 trees) with high R
2
 = 0.98; smaller RSE, 0.12 and 

small bias, 1.62% was selected for equation development (appendix 3.1). The high 

R
2
 value of equations with a sample size of 60, 54 and 48 trees is attributed to 

holdout of trees with a weak DBH-biomass relationship. Bias for various holdouts 

ranged between -34.9 and 29.7%; thus averaging the 12 validation results greatly 

reduced variability. 
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Table 2.2 Allometric relationship between DBH and AGB for selecting of suitable sample size. 

Sample size Equation  R
2
 P-value RSE Bias %  

72 470.2)(088.0 dbhAGB   0.983 <0.001 0.119 - 

66 461.2)(091.0 dbhAGB   0.984 <0.001 0.124 2.1 

60 472.2)(089.0 dbhAGB   0.986 <0.001 0.131 5.1 

54 472.2)(089.0 dbhAGB   0.985 <0.001 0.138 6.4 

48 457.2)(094.0 dbhAGB   0.985 <0.001 0.146 5.2 

All equations were fitted by including ln(DBH), ln(H), ln(ρ) and ln(ca) as separate 

predictors, so that they each were attributed an own scaling parameter. This was due to 

the identical scaling rule inhibiting a detailed assessment of the effect of additional 

explanatory variables for equations fitted with compound derivatives of DBH, height, 

wood density and crown area; such as )ln()ln( 2 HdbhbaAGB   or 

)ln()ln( 2  HdbhbaAGB . Equations were developed using a sample size of 66 

trees (training set) and an additional 6 trees for validation. One tree was randomly 

selected from each diameter class for the validation set, while the remaining 66 trees 

were used to develop the equation. The process was repeated 12 times with different 

random selections such that each tree in the sample was used once for validation. This 

approach was adopted because the holdout sample of six trees was considered too 

small a number for validation to adequately reveal errors. In particular, having one tree 
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per diameter class to validate the models would not have allowed a class-wise 

assessment of bias and prediction error. 

The fit of the models was assessed in terms of bias and error. Bias is an important 

statistic for landscape-level application as the bias would not cancel out when making 

predictions for many trees in a landscape. For models that consistently over- or 

underestimate biomass within a diameter class, the expected value of the relative error 

is not zero; however, if on average across all trees in a diameter class the model does 

not over- or underestimate biomass, then there is no bias. The quality of the estimate 

was determined by assessing the difference between the predicted and measured 

biomass and the relative error expressed as, 100)(% 


BMmeasured

BMmeasuredBMpredicted
Bias  (Chave 

et al., 2005). When considering predictions for individual trees, the typical size of error 

is more important than the bias. This typical error of a single prediction was measured 

by root mean square error (RMSE), determined as
n

bias
RMSE




2%)( . Root mean square 

error helped to describe the variability of bias, as zero bias might result from under- or 

over-estimates canceling out during the prediction of many trees, while the prediction 

for an individual tree may be inaccurate.  

The coefficient of determination, defined for non-linear models as 
iancetotal

ianceresidualR
var

var2 1  

from the GLM fit, and Akaike‟s Information Criterion, AIC (Akaike, 1981) were used 

as measures of goodness of fit. However, bias and RMSE were given much weight and 

used to compare and select the most suitable equation. The use of R
2
 was limited to 
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equations with a single explanatory variable while adjusted R
2
 (R

2
adj) was used for 

models with two or more variables to reflect both the number of independent variables 

in the equation and the sample size. 

2.6.2 Evaluation of selected published allometric equations 

The suitability of using published equations to estimate biomass in agricultural 

landscapes was assessed based on the accuracy of estimates obtained, mathematical 

simplicity and the practicability of use. The equation of Henry et al. (2009) constructed 

from data collected in Western Kenya; Chave et al. (2005) for global dry, moist and 

wet forests; Chave et al. (2001) for pantropical moist forests; Brown et al. (1989) for 

pantropical forests; Brown (1997) for global dry, moist and wet forests and Djomo et 

al. (2010) for pantropical moist forest were evaluated (Table 2.3). The equations of 

Cairns et al. (1997) and Mokany et al. (2006) for estimating BGB and the IPCC default 

root-to-shoot ratio, RS (IPCC, 2006) were also assessed. 

The global equations by Chave et al. (2005) and Brown (1997) are generic, stratified 

by climatic zones i.e. wet for high rainfall area with >3500 mm year
-1

 (standardized to 

sea level conditions) and no seasonality, moist for areas with 1500-3500 mm year
-1

 and 

a short dry season, and dry for areas with rainfall <1500 mm year
-1

 and a dry season of 

several months. 
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Table 2.3 Selected published allometric equations for estimating aboveground and belowground biomass 

of tropical vegetation. 

Equation Eco-climatic zone Author  

320.2)(136.0 dbhAGB   global dry forest  Brown, 1997 

530.2)(118.0 dbhAGB   
global moist forest Brown, 1997 

2740.0530.6297.21 dbhdbhAGB   global wet forest Brown, 1997 

972.0)(044.0  HdbhAGB  
pantropical Brown et al., 1989 

916.02 )(112.0  HdbhAGB  global dry forest  Chave et al., 2005 

)(051.0 2  HdbhAGB  global moist forest Chave et al., 2005 

940.02 )(078.0  HdbhAGB  global wet forest Chave et al., 2005 

420.2)(135.0 dbhAGB   neotropical Chave et al., 2001 

562.2)(125.0 dbhAGB   
pantropical moist Djomo et al., 2010 

930.02 )(051.0 HdbhAGB   western Kenya   Henry et al., 2009 

884.0347.0 AGBBGB   
tropical forests Cairns et al., 1997 

890.0489.0 AGBBGB   tropical forests Mokany et al., 2006 

Equations by Chave et al. (2005) were built with data from natural forests growing in 

tropical climates, excluding plantations or managed forests. Chave et al. (2001) was 

developed from datasets spanning moist to wet tropical forests while equations by 

Brown (1997) were developed for broadleaf forests from a database that included trees 

with DBH 5-148 cm. 
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The diameters of all non-harvested trees measured in each 0.09 ha plot were converted 

to biomass using equations developed in this study. The biomass of individual trees 

was summed up to yield plot level biomass. Plot level biomass estimates were up-

scaled to estimate the representative landscape biomass stock per hectare. Biomass 

estimates in tonnes per hectare (t ha
-1

) were converted to C stock (t C ha
-1

) by 

multiplying the estimate by the C concentration determined by element analysis of C 

content in samples. The SE of the landscape level C per hectare was estimated from 

the plot-to-plot variation in estimated biomass. 
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CHAPTER THREE 

3.0  ABOVEGROUND BIOMASS ESTIMATION USING DIAMETER 

3.1 Introduction  

A variety of allometric equations have been developed for estimating AGB in tropical 

species. Some are broadly derived, covering a wider geographic range such as Chave 

et al. (2005) and Brown (1997) while others are specific for a certain location, such as 

Ketterings et al. (2001) and Basuki et al. (2009). Species specific equations also exist, 

e.g. Okello et al. (2001) in Kenya, Cole and Ewel (2006) in Costa Rica and Navar 

(2009) in Mexico. For general purposes, FAO recommends global equations stratified 

by ecological zones, particularly where site or species specific equation are not 

available (Brown, 1997). 

Diameter at breast height has been widely used and recommended as an adequate 

growth parameter for estimating AGB because it can easily be measured with higher 

accuracy and provides better estimates (Eamus et al., 2000). However, a single 

allometric relationship based on DBH alone may not accurately estimate biomass 

across different ecosystems (Keith et al., 2000). This is because the relationships 

between tree biomass and stem allometric properties vary depending on tree age, 

management practices and biophysical characteristics of the site (Henry et al., 2011). 

Allometric equations may therefore be refined by including wood density, height or 

crown area. A combination of DBH, height and/or wood density has been used to 
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estimate AGB by various authors (Brown, 1997; Chave et al., 2005; Henry et al., 

2009). Conversely, few studies have reported relationships of biomass with crown 

metrics (Sah et al., 2004; Sampaio and Silva, 2005), and at present, no study provides 

validated equations for estimating AGB using crown area as a supporting variable. 

This study evaluated diameter-based allometric equations as a non-destructive tool for 

estimating AGB in agricultural landscapes. The specific objectives of this investigation 

were to: 

i. Develop diameter-based equations for estimating AGB through empirical, 

destructive measurements; 

ii. Determine the influence of height, wood density and crown area as supporting 

proxies for estimating AGB in agricultural landscapes; 

iii. Test the suitability of published global and local equations for estimating AGB 

in agricultural landscapes of Western Kenya; 

iv. Determine the potential role of agricultural landscapes in C sequestration 

through estimation of representative AGB C stocks. 

3.2 Method 

Measurement procedures for DBH, height, wood density and crown area and biomass 

sampling are provided in chapters 2.4 and 2.5. Aboveground biomass and the biomass 

of leaves, branches and stem were regressed on DBH alone and DBH in combination 

with height, wood density and/or crown area to obtain allometric coefficients for 

estimating biomass. Allometric power function equations, baXY  and their linear 
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equivalents, )ln()ln( XbaY   where Y is the dependent variable, X is the independent 

variable, a is the intercept and b is the scaling exponent, were used to predict biomass 

from independent variables. Equations for estimating AGB and the biomass of stem, 

branches and leaves using DBH alone as predictor variable were built as follows. 

)ln()ln( dbhbaAGB  ……………………………………………………..Equation 3.1 

)ln()ln( dbhbaBM stem  …………...…………….……………….……….Equation 3.2 

)ln()ln( dbhbaBMbranch  …………...……………….……………….…...Equation 3.3 

)ln()ln( dbhbaBM leaves  …………...……………….……………….……Equation 3.4 

Height (H), wood density (ρ) and crown area (ca) were also evaluated as supporting 

parameters for estimation of AGB as follows. 

)ln()ln()ln( HcdbhbaAGB  …………………………………………...Equation 3.5 

)ln()ln()ln(  cdbhbaAGB ……….…………………..……………….Equation 3.6 

)ln()ln()ln( cacdbhbaAGB  ……….………………….……………….Equation 3.7 

)ln()ln()ln()ln( cadcdbhbaAGB   ……………………………..…Equation 3.8 

)ln()ln()ln()ln(  dHcdbhbaAGB ..……….……………………….Equation 3.9 

)ln()ln()ln()ln( cadHcdbhbaAGB   ……….……………………...Equation 3.10 

)ln()ln()ln()ln()ln( caedHcdbhbaAGB   ……………………...Equation 3.11  

3.3 Results 

3.3.1 Species distribution and dendrometric relationships  

A total of 922 trees representing 39 species were measured; destructively (72 trees) 

and non-destructively (850 trees) along the Yala River basin. The sampling strategy 
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represented well species abundance and distribution across the landscape 

(Figure 3.1). Tree species that were dominant in the harvested sample also occurred 

as the most frequent species among the non-harvested trees measured across the 

three sites. More than 80% of the trees encountered are not native to East Africa. 

 
Figure 3.1 Distribution of harvested and non-harvested tree species measured along the River Yala 

basin. The 25 eucalyptus trees harvested in Middle Yala are included as non-harvested trees. 

The most common species encountered were Markhamia lutea (58.3%) in Lower, 

Eucalyptus camaldulensis (44.5%) in Middle and A. mearnsii (59.4%) in Upper 

Yala. Other species commonly found along the basin include Mangifera indica 
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(14.3%) in Lower, Eucalyptus grandis (13.7%) and Cupressus lusitanica (10.6%) in 

Middle and Eucalyptus grandis (16.7%) in Upper Yala. 

The total AGB for the 72 harvested trees (basal area: 4 m
2
 ha

-1
) was 34.3 t ha

-1
 with 

leaves, branches and stems contributing 3.5, 39.1 and 57.4%, respectively. While 

most of the tree biomass is held in the stem (44.5%), branches and leaves represent 

30.2 and 2.7% of the TTB. About 1.1% of the total AGB was lost through cutting 

trees (felling) and sectioning stems and branches into practically weighable pieces 

(<300 kg). Losses due to sectioning trees were proportional to tree size and 

branching pattern (Figure 3.2).  

 

Figure 3.2 Portions converted to wood scrapings and saw dust during felling of trees and partitioning 

of (a) stem and (b) branches into practically weighable pieces for trees of various sizes. 

Losses directly related to sectioning the stem and branches were 1.4% and 0.7% of 

the respective total component biomass. Greater losses, more than 1% of stem 
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biomass were observed in larger trees, with losses as high as 2% recorded in most 

large trees, DBH >60 cm, with prolific branching. 

Harvested trees were stratified into six diameter classes, resulting in even distribution 

of DBH. The distribution for DBH, height and crown area for non-harvested trees was 

positively skewed; indicating that the landscape is dominated by small diameters, short 

trees and small crowns (Figure 3.3b).  

 

Figure 3.3 Distribution of crown area, height and diameter at breast height (DBH) for (a) harvested trees, 

and (b) non-harvested trees measured along the Yala River basin. 

Diameter at breast height, crown area and height for the harvested trees ranged from 

3.2-102 cm, 0.4-286.5 m
2
 and 4.2-36.6 m, respectively. The corresponding range for 

non-harvested trees was 2.5-89.5 cm, 0.2-272.5 m
2
 and 2.4-38.6 m for DBH, crown 

area and height. The correlation between DBH and height was moderate for trees from 
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the three sites evaluated (Figure 3.4); both for harvested (R
2
 = 0.55) and non-harvested 

trees (R
2
 = 0.58). However, a strong correlation was observed between DBH and 

height for trees from individual sites: Middle, R
2
 = 0.73, Upper, R

2
 = 0.84; except the 

Lower Yala, R
2
 = 0.50, possibly due to the lower spread of diameters in this block. 

 

Figure 3.4 Relationship between diameter at breast height and height for (a) harvested trees, and (b) 

non-harvested trees measured across the three sites evaluated. 

The variability in the DBH-height relationship was greater in smaller trees, DBH 

<20 cm (R
2
 = 0.38 for Lower, R

2
 = 0.42 for Middle and R

2
 = 0.04 for Upper Yala) 

compared to trees with DBH >20 cm (R
2
 = 0.61 in Upper and R

2
 = 0.62 in Middle 

Yala); again, except for Lower Yala (R
2
 = 0.11). Trees in Lower Yala were generally 

short compared to those in Middle and Upper Yala. 

Diameter at breast height had a strong and significant relationship with AGB (R
2
 = 

0.98; P<0.001) and the biomass of stem (R
2
 = 0.96; P<0.001), which is evident of 
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biomass increment with increasing DBH (Figure 3.5). The correlation between DBH 

and the biomass of branches (R
2
 = 0.88) and leaves (R

2
 = 0.81) was moderate.  

 

Figure 3.5 Relationship between diameter at breast height and (a) aboveground biomass, and (b) the 

biomass of stem, branches and leaves. 

3.3.2 Wood density and carbon content 

Wood density for aboveground woody parts (stem and branches) ranged from 

0.28 g cm
-3

 in Spathodea campanulata to 0.78 g cm
-3

 in Syzygium cordatum. The 

overall mean±SE (and median) wood density for the sampled trees was 

0.52±0.02 g cm
-3

. Whereas the mean wood densities between the three sites were not 

significantly different (Lower = 0.53±0.03 g cm
-3

, Middle = 0.50±0.02 g cm
-3 

and 

Upper Yala = 0.58±0.03 g cm
-3

), statistically significant differences (P<0.001) were 

observed among trees of different sizes and species. Species dominant at 

altitude >2200 m (e.g. A. mearnsii) had high mean values (0.66±0.03 g cm
-3

) 
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compared to M. lutea (0.41±0.03 g cm
-3

), a species dominant at 1200 m above sea 

level. A mean of 0.39±0.03 g cm
-3 

was recorded for smaller trees, DBH <10 cm 

while for larger trees, DBH >60 cm had a higher mean (0.61±0.03 g cm
-3

). 

Wood density values determined by water displacement method for branches and 

roots compared well to corresponding values determined by measurement of disc 

dimensions (Figure 3.6a). The correlation coefficient between the two methods was 

high for the branches (R
2
 = 0.88) but moderate for the roots (R

2
 = 0.64). The 

measured dimensions approach yielded lower estimates than water displacement, 

although the mean wood density for branches determined by water displacement 

(0.54 g cm
-3

)
 
was not statistically significantly different from that determined by 

measured dimensions (0.53 g cm
-3

). In contrast, mean wood density for roots 

determined by water displacement (0.48 g cm
-3

) was significantly different from 

0.45 g cm
-3

 estimated by disc dimension (P<0.05). The range of wood density 

determined by water displacement for branches and roots, 0.30-0.73 g cm
-3

 and 0.32-

0.64 g cm
-3

 was comparable to 0.29-0.69 g cm
-3 

and 0.29-0.66 g cm
-3 

established by 

measured dimensions. There was as strong correlation between stem and branch 

wood density determined by coring, R
2
 = 0.74 (Figure 3.6b). The mean wood density 

for stem 0.54 g cm
-3 

and branches (0.55 g cm
-3

) determined by coring compared well 

with estimates for branches determined by displacement and measured dimensions. 

The mean (±SE) carbon content for the 72 trees used in this study was 47.6±0.09% 

with values ranging from 46.4 % in P. americana to 49.6 % in G. robusta. ANOVA 
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showed that C content in the stems (47.6±0.16%), branches (47.4±0.15%) and roots 

(47.7±0.14%) were not significantly different. Biomass weighted means for the 

stems, branches and roots were 47.8, 47.5 and 48.0%. 

 

Figure 3.6 Comparison of (a) wood density determined using water displacement method to measured 

disc dimensions, and (b) wood densities for branches and stem determined by coring method. 

3.3.3 Performance of allometric models developed 

Equation 3.1 predicted AGB and the biomass of stems and branches of harvested 

trees with high accuracy, but overestimated leaf biomass (Table 3.1). Wood density 

data did improve model fit, crown area data marginally improved model fit while 

height data did not (Table 3.2). Equation 3.1 is presented as the most suitable and 

simple equation for estimating AGB in the investigated agricultural landscapes. 

However, where trees differ substantially in form and wood density, equation 3.6 is 

considered as an appropriate alternative when additional explanatory variables such as 
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height, wood density and crown area are available for use; mainly because equation 3.6 

has a lower AIC value, improved model fit and requires only two parameters (DBH 

and wood density). 

Table 3.1 Allometric coefficients for estimating AGB (equation 3.1), stem biomass (equation 3.2), 

branch biomass (equation 3.3) and leaf biomass (equation 3.4).  

 

 

 

 

 

  

Component  a(SEE) b(SEE) R
2
 Bias % 

Equation 3.1 0.091(0.131) 2.472(0.039) 0.984 -4.63 

Equation 3.2 0.059(0.174) 2.442(0.052) 0.970 -4.06 

Equation 3.3 0.010(0.351) 2.772(0.104) 0.910 -1.55 

Equation 3.4 0.084 (0.282) 1.702(0.084) 0.856 8.64 
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Table 3.2 Allometric coefficients for estimating aboveground biomass using DBH in combination 

with height (equation 3.5), wood density (equation 3.6), crown area (equation 3.7), and DBH in 

combination with height, wood density and/or crown area (equation 8 to 11).  

Equation  a b c d e R
2
adj AIC Bias %   

Equation 3.5 

SEE 

0.092 

0.149 

2.488 

0.065 

-0.028 

0.089 

    
0.977 99 -4.77 

Equation 3.6 

SEE 

0.225 

0.209 

2.341 

0.041 

0.730 

0.140 

    0.984 72 -5.26 

Equation 3.7 

SEE 

0.107 

0.161 

2.318 

0.098 

0.101 

0.059 

    0.979 95 -4.57 

Equation 3.8 

SEE 

0.253 

0.220 

2.213 

0.085 

0.705 

0.140 

0.086 

0.050 

  0.985 71 -5.06 

Equation 3.9 

SEE 

0.221 

0.211 

2.301 

0.064 

0.062 

0.076 

0.755 

0.143 

  0.984 73 -5.04 

Equation 3.10 

SEE 

0.106 

0.169 

2.281 

0.129 

0.039 

0.093 

0.110 

0.063 

  0.979 96 -4.46 

Equation 3.11 

SEE 

0.319 

0.218 

2.097 

0.111 

0.119 

0.079 

0.743 

0.140 

0.112 

0.059 

0.985 70 20.34 

3.3.4 Performance of existing allometric equations 

Figure 3.7 shows the biomass estimation by equation 3.1 developed in this study 

compared to existing local and global equations recommended for tropical species 
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(parameters of published equation are described in section 2.6.2). A scatter of the 

measured AGB values and the corresponding trend-line is plotted for comparison. 

The equations of Chave et al. (2005) for dry forests over-predicted biomass while the 

equations of Brown (1997) for wet forests and Henry et al. (2009) for Western Kenya 

under estimated biomass. 

  

Figure 3.7 Comparison of actual biomass harvested and biomass predictions by equation 3.1 and 

selected published equations. 

All equations showed patterns in prediction error across trees of different sizes. 

Equation 3.1 was the most optimal, comparing well with the equation of Chave et al. 

(2005) for dry forests (Figure 3.8).  
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Figure 3.8 Disaggregation of bias for different equations across trees of various sizes.  

However, like most published models, equation 3.1 overestimated biomass for 

smaller trees, <20 cm but had relatively consistent bias (<5%) across diameter 

classes. Chave et al. (2005) equation for dry forest had a good spread of error across 

the diameter classes except for smaller (DBH <10 cm) and trees with DBH ≥60 cm; 

which showed relatively high errors, 11% and 14% respectively. The equation of 
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Brown (1997) for wet forests overestimated the biomass of smaller trees 

(DBH <60 cm) by an average of 12%; with greater errors encountered between DBH 

size 20-40 cm, while it underestimated the biomass for trees with DBH >60 cm by 

16%. The pan-tropical equation by Chave et al. (2001) overestimated biomass by 

15% while the equation of Henry et al. (2009) underestimated biomass by 11%.  

Additional globally renowned equations by Chave et al. (2005) for moist forests and 

Brown et al. (1989) pantropical equations overestimated biomass by about 25%. 

Other equations tested such as Djomo et al. (2010), moist forest equations by Brown 

(1997), Brown et al. (1989) and Chave et al. (2005) overestimated biomass by more 

than 50%. Root mean square error shows that the trend in prediction of single trees 

varied across size class for different equations. For example, the equations of Brown 

et al. (1989) for pantropical forests gave poor estimates for larger trees while Brown 

(1997) for dry forests gave better estimates for larger trees. The equations developed 

in this study maintained a similar level of bias across diameter classes which make it 

more robust than other tested equations. 

3.3.5 Representative aboveground tree biomass carbon 

 Small trees, DBH <10 cm dominated the landscape (65.6%) though they accounted 

for only 4.8 % of the estimated biomass (Figure 3.9). In contrast, larger trees (DBH 

>40 cm) were very few (2.5%) but held most of the biomass (47.6%). Also, more 

than 75% of the crowns were <15 m
2
, 80% of the DBH were <15 cm and 66% of the 

heights were <10 m. Tree biomass for the 3 blocks differed significantly (P<0.001) 
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with higher biomass estimated in Middle (63%) compared to Upper (21%) and 

Lower (16%) sites. Representative AGB in agricultural landscape mosaics of 

Western Kenya was estimated to be 36.2±0.03 t ha
-1

 using equation 3.1. Using a C 

concentration of 48% determined from elemental analysis of carbon content in 

samples, agricultural landscapes evaluated were estimated to hold 17.5±0.01 t C ha
-1

 

in standing trees.  

 

Figure 3.9 Distribution of non-harvested trees measured per diameter class and their share of 

estimated biomass for the River Yala basin. 



50 

 

3.4 Discussion 

3.4.1 Dendrometric relationships 

The diameter-height relationships varied across the three sites evaluated. This is 

attributed to species-specific differences in biomass partitioning patterns and their 

responses to different environmental conditions; different tree species dominated 

different sites. The weak relationship between height and biomass are likely to have 

contributed to a high variability in height of trees encountered because different trees 

species dominated different sites. Management is likely to have also influenced the 

relationship between height and biomass given that 20% of the trees sampled were 

pruned. Height increased almost linearly with diameter, but seemed to reach only a 

species specific maximum height. This is in line with the observation that trees of a 

particular species in a given location have a maximum height.  

The minimum DBH of 2.5 cm was adopted to take care of the slow growing species 

of the semi-arid environments in Lower Yala. Unlike in Lower Yala, trees in Middle 

and Upper Yala attained greater heights, indicating a benign environment that allows 

rapid growth for effective light interception. In the semi-arid environment of Lower 

Yala light competition is less important compared to belowground competition for 

water and nutrients resulting in plants with shorter heights.  
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3.4.2 Wood density and carbon content 

The results show that wood density was affected by tree size. Smaller trees, 

DBH <10 cm had a low mean of 0.39 g cm
-3 

while a high mean of 0.61 g cm
-3

 was 

observed in larger trees, DBH >60 cm. This observation contrasts a report by Basuki et 

al. (2009), that increasing DBH is not followed by an increase in wood density. 

Similarly, wood density significantly varied between species but not location. This 

suggests that wood density from a database could be useful for improving the precision 

of allometric equations rather than taking measurements for each location. Both mean 

and median (0.52 g cm
-3

) wood density of tree species sampled varied considerably 

but was well within the range of tropical African forests, 0.3-0.9 g cm
-3

 (Brown, 

1997). 

A direct comparison of wood densities from measurement of disc dimensions and 

water displacement carried out on branch and root samples from 60 trees showed that 

values derived from the separate methods on the same individual samples were 

comparable. Thus, either of the methods can accurately provide wood density 

estimates. The water displacement method was considered most suitable because of 

ease of use and applicability to trees that might be hard to core. Since branch wood 

density had a relatively high correlation with stem wood density (R
2
 = 0.74) and 

since the mean wood densities determined by the coring method for the two sections 

were comparable (0.55 g cm
-3

 and 0.54 g cm
-3

), wood density could be estimated for 
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trees in agricultural mosaics using branch sections without having to core or cut the 

main stem of the tree.  

Carbon budgets are often based on the assumption that plant biomass comprises of 

50% C, which was considered fairly high compared to 47.6±0.09% determined and 

used for this study to convert biomass into C. This value is close to the IPCC default, 

47% (IPCC, 2006) but higher than 43% reported by (Ren et al., 2009) for Mangrove 

plantations in Southern China. 

3.4.3 Performance of allometric models developed  

Equation 3.1, 472.2)(091.0 dbhAGB   with DBH as the only explanatory variable 

provided a satisfactory estimation of biomass since the total variation explained by 

the relationship is high (98%) and the associated bias was small (5%). The results 

indicate that DBH is a strong indicator of aboveground biomass, which implies that 

the variability of biomass of trees in agricultural landscapes is largely explained by 

its relationship to DBH. The importance of the results comes from assessment of how 

large the actual errors are, whether there is bias and how these depend on diameter, for 

the quality of landscape level measures will depend on this. Likewise it is also 

noteworthy that the overall R
2
 is as much a function of the diameter distribution of the 

sampled trees as of the fit of the model. The apparently small differences in the 

equations for small trees could add up to a large amount of C when looking at a 

landscape; this is an example of the bias problem. The results agree with previous 
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reports (Basuki et al., 2009; Brown et al., 1989) that DBH alone is a good predictor 

of biomass especially in terms of the multiple tradeoffs between accuracy, cost and 

practicability of measurements. 

The relatively low R
2
 value for the generic diameter-leaf biomass relationship and 

the inability to predict leaf biomass with high accuracy may be due to the variable 

leaf phenology between species. Leaves are also highly susceptible to weather and 

interplant competition and it is likely that crown geometry was influenced by such 

factors in addition to management impacts (e.g. pruning) leading to the heterogeneity 

as observed for leaf biomass between trees (Cole and Ewel, 2006; Navar, 2009). 

Including total tree height data did not substantially improve biomass predictions in 

this study when compared to using DBH alone. These findings contrast results from 

Panama (Bastien-Henri et al., 2010), the humid lowlands of Costa Rica (Cole and 

Ewel, 2006) and Sumatra, Indonesia (Ketterings et al., 2001), all reporting that height 

substantially improves model fit. However, conclusions similar to those found in this 

study were drawn by Basuki et al. (2009) for Kalimantan, Indonesia, and by Nelson 

et al. (1999) for a mixed species equation in the Brazilian Amazon. The error 

associated with the equations of Chave et al. (2005) for global wet forests supports 

this study‟s contention that height does not improve biomass estimation in Western 

Kenya. 

The results concur with previous reports that wood density data increases accuracy 

(Basuki et al. 2009; Chave et al. 2005). The effect of wood density becomes 
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particularly conspicuous when comparing DBH, height, wood density and the 

biomass of larger trees: S. cordatum with DBH 83.4 cm, height 35.3 m and wood 

density 0.8 g cm
-3 

had AGB of 8.5 t (measured biomass) compared to 7.4 t of E. 

camaldulensis with DBH 96 cm, height 44.5 m and wood density 0.6 g cm
-3

. Thus, 

the dry weight of S. cordatum, despite shorter and thinner smaller, exceeds the dry 

weight of E. camaldulensis by 14.2%.  

Crown area as an input variable marginally improved model fit. The significant 

correlation between DBH and crown area (R
2
 = 0.83) corresponds to the relationship 

between crown area and AGB, R
2
 = 0.85 (Figure 4.2). Since the correlation between 

DBH and AGB is high, the addition of crown area is expected to only increase R
2 

slightly. Difficulties or certain degrees of subjectivity associated with measuring 

crown area are frequently the reason for not including it as a parameter in biomass 

equations. However, crown geometry in agricultural landscapes and its heterogeneity 

reflects specific interplant competition and management; hence incorporation of 

crown area would improve the accuracy of equations for trees in such landscapes. 

3.4.4 Suitability of existing equations 

Existing equations that initially appeared suitable for estimating AGB in Western 

Kenya generally misjudged biomass. However, bias and biomass prediction of 

equation 3.1 compare well with the performance of widely recognized global 

equations of Chave et al. (2005) for dry forests. This indicates that most biomass 

equations are not necessarily site specific and may be applicable across broader 
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conditions. However, using exclusively climatic criteria to describe the region of 

applicability for global equations proved to be problematic. The mean annual rainfall 

and temperature for the study sites do not match the criteria defining the forest type 

associated with the equation performing best, i.e. dry forests by Chave et al. (2005) 

and wet forests by Brown (1997). The average catchment rainfall across River Yala 

basin would suggest the equation for moist forests to be adequate. However, the use 

of the tropical moist forest equations of Chave et al. (2005) and Brown (1997) lead to 

a substantial overestimation of biomass compared to dry and wet forests equations by 

the same authors. Nevertheless, Chave et al. (2004) reported the choice of allometric 

equation to be the most important source of error in biomass estimation, which 

underlines the importance of empirical validation considering that a global tropical 

forest type classification does not seem to be intuitive. The equations of Djomo et al. 

(2010), Brown (1997) for moist forest and Chave et al. (2005) for moist forest 

applied to inventory data from Western Kenya indicate the magnitude (22-92%) by 

which an equation can misjudge biomass when developed in one area and applied in 

another area without prior validation or calibration.  

Using the published equations to predict landscape biomass for non-harvested trees, 

the equation by Henry et al. (2009) and Brown (1997) for wet forests gave generous 

estimates of 36.1 t ha
-1

 and 39.1 t ha
-1

 respectively. These amounts are exaggerated 

although the two equations were found to underestimate biomass by 11% and 7%. 

This discrepancy is explained by the disaggregation of error by DBH class. For 

instance Henry et al. (2009) overestimated the biomass of smaller trees by 37% and 
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larger trees by 5% while the equation of Brown (1997) overestimated biomass of 

trees with DBH <60 cm by 7 to 20% and underestimated the biomass of few larger 

trees by 16%. Hence, the use of equations to measure landscape biomass should 

consider disaggregation of error by size class as well as the predictability of single 

trees that varies for different equations.  

3.4.5 Representative landscape biomass carbon 

Agricultural practices such as nitrogen fertilization, paddy cultivation, animal 

production and pasture maintenance by burning favour GHG emissions. However, 

judicious integration of trees in agricultural landscapes improves farm productivity 

while providing opportunities to create C sinks. AGB estimates determined in this 

study from Western Kenya (17.4±3.9 t C ha
-1

) were higher than 9-11 t C ha
-1

 

reported by Henry et al. (2009), in the same region, but within C storage range of 4-

22 t C ha
-1

 reported by Albrecht and Kandji (2003) for Western Kenya. Whereas the 

present study focused only on AGB in live trees, Albrecht and Kandji (2003) 

determined AGB in live trees, litter, deadwood, understory, and crops in some 

improved fallows, while Henry et al. (2009) determined C stocks in aboveground 

perennial biomass considering a mixture of agroforestry and cropping systems.  

Underrepresentation of larger diameter trees is a common problem in the 

development of allometric equations (Brown, 1997), which can be overcome by 

sampling a consistent number of trees per DBH class. However, the landscape 

studied is dominated by small trees indicating a renewed effort in tree planting. The 
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few larger trees account for most of the C stocks in the area, underlining the need to 

accurately estimate biomass for large trees. The high biomass harvested and 

estimated for the Middle and Upper Yala was accounted for by the presence of tall, 

larger DBH trees compared to the Lower Yala. This variation is attributed to the 

differences in area climatic conditions and edaphic factors. Sufficient rainfall and the 

relatively fertile soils of the Middle Yala (1950 mm) favor rapid growth of trees. In 

contrast, degraded soils and low rainfall (1479 mm) of Lower Yala can explain a 

lower tree density and limited tree growth in the area.  

3.4 Conclusion  

The simpler power function model using DBH alone gave good fit (R
2
 = 0.98) and 

performed best, with about 95% accuracy. Diameter at breast height was thus 

confirmed to be a reliable predictor of AGB in complex agricultural landscapes in 

Western Kenya. The accuracy of diameter predictions can be improved by wood 

density and crown area, particularly in trees that differ significantly in architecture. 

The equations developed are robust, derived from diverse species growing in a wider 

geographic range and influenced by management impacts, and will be useful for 

programs assessing C stocks and storage potential by trees in agriculturally 

dominated landscapes.  
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CHAPTER FOUR 

4.0  ABOVEGROUND BIOMASS ESTIMATION USING CROWN AREA 

4.1 Introduction 

Conventional allometries determine biomass from measurements of DBH or volume. It 

is currently not possible to derive either of these measurements directly from non-

destructive measurements such as remote sensing. As a result, DBH is commonly 

used in allometric relations to estimate biomass. Diameter is preferred as predictor 

variable because it can be measured with ease and high accuracy, and explains over 95 

% of the variability observed in AGB (Brown, 1997). As biomass estimates at larger 

scales require remotely sensed data, new allometric relations are required using crown 

area and/or tree height as predictors of biomass, both of which can be derived from 

remote sensing. Studies have shown that crown area can be used as primary predictor 

variable, especially in low-growing multi-stemmed trees (Sah et al., 2004). 

Determination of biomass as a function of crown area can therefore be carried out 

traditionally using field-based inventory plots or from aerial imagery. However, 

challenges with using crown area as a predictor variable abound, ranging from inability 

to measure crown area accurately to lack of consistent allometric equations (Gibbs et 

al., 2007).  

Remote-sensing techniques have emerged as a promising alternative to destructive 

sampling. Collection of high resolution imagery that allows individual tree-level 
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measurements such as height and crown dimensions makes it possible to measure and 

monitor biomass in large areas at potentially low cost and less time (Drake et al., 

2003). Information derived from overhead imagery can then be used to obtain 

relationships between remotely determined crown metrics and field measured 

parameters. Previous studies such as, Drake et al. (2003) and Massada et al. (2006) 

have already established significant relationships between remotely sensed crown 

metrics e.g. crown projection area and tree structural characteristics such as DBH, and 

even AGB although studies that relate biomass directly to crown area are scarce. 

Remotely determined crown area measurements for particular plant types can therefore 

be used to derive estimates of AGB using allometric equations. This requires a new 

generation allometry using crown area as a predictor of AGB to provide a basis for 

calibration and validation of remote sensing estimates.  

The objective of this study was to develop reliable crown area-based equations for 

estimating AGB for trees in multi-species agricultural landscapes of Western Kenya. 

The specific objectives of the study were to: 

i. Develop allometric equations based on crown area for AGB estimation, 

ii. Evaluate the influence of height and wood density on crown area predictions.  

4.2 Method 

The 72 trees used to develop diameter equations (chapter three) were used to develop 

equations for estimating AGB using crown area. Twenty of the 25 trees harvested in 

Middle Yala were used to evaluate the performance of crown area equations developed 
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in the area. Scatter diagrams of raw data were plotted to identify outliers and visually 

assess the relationships between crown area and DBH, height or biomass. Log 

transformed data for AGB as well as the biomass of stems, branches and leaves were 

used to derive prediction equations using crown area (ca) alone and ca in 

combination with height (H) and/or wood density (ρ). The following equations were 

tested: 

)ln()ln( cabaAGB  ………………………….……………….……..……Equation 4.1 

)ln()ln()ln(  ccabaAGB ….…………………….……………..……..Equation 4.2 

)ln()ln()ln( HccabaAGB  ………………………….…………………Equation 4.3 

)ln()ln()ln()ln(  dHccabaAGB ………………………….…….....Equation 4.4 

A similar approach was used to derive equations for estimating biomass of stem, 

branches and leaves with crown area alone as predictor. 

)ln()ln( cabaBM stem  …………………….…….…….……….………..Equation 4.5 

)ln()ln( cabaBMbranches  ………………………….…….…………….….Equation 4.6 

)ln()ln( cabaBM leaves  ……………………….….…………….………..Equation 4.7 

Allometric equations for estimating AGB were also developed using trees with crown 

area < 20 m
2
 and > 20 m

2
. 

)20ln()ln( 2mcabaAGB  ……………………….…….…………….….Equation 4.8 

)20ln()ln( 2mcabaAGB  ……………………….….…………….…….Equation 4.9 

All equations were developed using a training set of 66 trees with an additional 6 trees 

for validation using multiple sample hold out.  
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4.3 Results 

4.3.1 Biometric relationships  

Crown area was significantly correlated with DBH (R
2
 = 0.86; p<0.001) but not with 

height (R
2
 = 0.41) for harvested trees (Figure 4.1). Similarly, the relationship between 

crown area and DBH for non-harvested trees measured across the three sites evaluated 

was strong (R
2
 = 0.89). Even if investigated separately, trees taken from the same site 

also showed a strong correlation between crown area and DBH: Middle (R
2
 = 0.77), 

Upper (R
2
 = 0.84) and Lower Yala (R

2
 = 0.86). A fairly weak relationship was 

observed between crown area and height for non-harvested trees (R
2
 = 0.38).  

 

Figure 4.1 Scatter plots showing the relationship between (a) crown area and DBH, and (b) crown area 

and tree height for harvested trees 

Crown area explained 85% of the variability observed in AGB for harvested trees 

(Figure 4.2); however, crown area explained only a small fraction of variability 
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observed in AGB for trees with smaller crowns, 20 m
2
 (R

2
 = 0.39) compared to trees 

with larger crowns, >20 m
2
 (R

2
 = 0.74). The correlation between crown area and the 

biomass of stems (R
2
 = 0.73) and branches (R

2
 0.82) was strong and significant 

(P<0.001), while the relationship between crown area and foliage biomass was 

moderate (R
2
 = 0.60). 

 

Figure 4.2 Regressions of biomass as a function of crown area for (a) aboveground biomass (AGB), and 

(b) the biomass of stems, branches and leaves.  

4.3.2 Performance crown area equations  

Equation 4.1, 418.1568.2 caAGB   based on crown area alone predicted AGB for 

harvested trees with a bias of 18.8%, about twice the error associated with the equation 

3.1 based on DBH (Table 4.1). Evaluation of the performance of equation 4.1 using 

20 trees harvested in Middle Yala showed that equation 4.1 overestimated AGB by 

30.2%; a similar test on equation 3.1 revealed a bias of 13.1%. Addition of height 
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(equation 4.2) and wood density data (equation 4.3) improved the R
2
 by 6 and 1.9%, 

respectively, while a combination of both height and wood density data (equation 4.4) 

improved R
2
 by 7.8%. Similarly, height and wood density data reduced the bias 

associated with equation 4.1 by 7.2 and 1.8%. Wood density data improved the 

performance of the model for the trees harvested from Middle Yala by reducing the 

bias from 30.2 to 9.9% while height data did not.  

Table 4.1 Allometric coefficients for estimating AGB using crown area alone (equation 4.1) or crown 

area in combination with height (equation 4.2), wood density (equation 4.3) and both height and wood 

density (equation 4.4).  

Equation a b c d R
2
adj P-value RSE Bias % 

Equation 4.1 

SEE 

2.568 

0.263 

1.418 

0.073 

  

0.846 

 

<.001 

 

0.120 

 

18.8 

 

Equation 4.2 

SEE 

0.398 

0.348 

1.123 

0.072 

1.062 

0.160 

 

0.906 

 

<.001 

 

0.121 

 

11.6 

 

Equation 4.3 

SEE 

11.336 

0.522 

1.258 

0.084 

1.401 

0.434 

 

0.865 

 

0.002 

 

0.120 

 

16.9 

 

Equation 4.4 

SEE 

1.738 

0.463 

0.965 

0.074 

1.058 

0.142 

1.384 

0.323 

0.925 

 

<.001 

 

0.121 

 

8.1 

 

Equation 3.1 

SEE 

0.091 

0.131 

2.472 

0.039 

  

0.982 

 

<.001 

 

 

8.2 
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Equations for stem (equation 4.5), branches (equation 4.6) and leaves (equation 4.7) 

greatly overestimated their respective biomass by about the same relative error, both 

for trees from all three sites evaluated and trees from Middle Yala (Table 4.2).  

Table 4.2 Allometric equations for estimating the biomass of stem, branches and leaves.  

Equation  a b R
2
 P value RSE Bias 1 

Equation 4.5 

SEE 

1.898 

0.318 

1.345 

0.088 

0.771 

 

<.001 0.120 

 

31.5 

 

Equation 4.6 

SEE 

0.245 

0.254 

1.707 

0.070 

0.895 

 

<.001 0.120 

 

22.1 

 

Equation 4.7 

SEE 

0.628 

0.204 

1.026 

0.056 

0.827 

 

<.001 0.120 

 

14.5 

 

Equation 4.8  

SEE 

3.732 

0.712 

1.181 

0.348 

30.5 

 

0.003 0.201 -18.4 

 

Equation 4.9  

SEE 

4.397 

0.487 

1.302 

0.115 

74.4 

 

<.001 0.151 39.3 

 

Equation 4.8 and 4.9 developed from trees with crown area less than 20 m
2
 and crown 

area greater than 20 m
2
, respectively, showed different degrees of accuracy. 

Equation 4.8 underestimated AGB of trees from all three sites evaluated by 18.4% and 

trees from Middle Yala by 1.9%, while equation 4.9 overestimated biomass in both 

cases by 39.3 and 61.2%, respectively. The equation by Sampaio and Silva (2005) that 
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use crown area as AGB predictor, 
118.1710.1 caAGB   for Brazilian dry forests 

underestimated the AGB by 68.8% and for trees from Middle Yala by 62.1%. 

Figure 4.3 shows the disaggregation of the relative error across trees in different size 

classes. Equation 4.1 overestimated the biomass of smaller trees (DBH ≤10 cm) by 

106.2% but underestimated the biomass of larger trees (DBH >40 cm) by about 10%. 

Height data effectively lowered the bias associated with equation 4.1 for trees with 

DBH <40 cm, but resulted in overestimation of the biomass of trees with DBH 

>60 cm. Conversely, wood density greatly reduced the bias of crown area based 

equation leading to underestimation in trees with DBH >40 cm. A combination of 

height and wood density data effectively reduced bias to <5% for trees with 

DBH >20 cm and to 50.4  from 106.2% for trees with DBH ≤10 cm. Equation 4.8 

showed decreasing overestimation, from 194.7% for small trees (<10 cm) to 11.3 % 

for trees with DBH 30 cm to underestimation by 14.2% for larger trees (DBH >40 cm). 

In contrast, equation 4.9 underestimated the biomass of trees with DBH <20 cm, but 

increasingly overestimated biomass with increasing tree size. 

Equation 4.1 estimated representative aboveground landscape biomass to be 

44.6±0.03 t ha
-1

, which is 22.5% more than 36.4±0.03 t ha
-1

 estimated by equation 3.1 

in chapter 3. Equation 4.4 with crown area, height and wood density estimated 

representative biomass to be 43.3 t ha
-1

 while the equation 4.8 derived from trees with 

smaller crowns, <20 m
2
 underestimated biomass (11±0.02 t ha

-1
), and equation 4.9 

from trees with crown area >20 m
2
 estimated representative biomass rather generously 
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(49.8±0.03 t ha
-1

). Equation 4.4 is considered to be the most adequate since it had the 

lowest relative error of 8.1% from cross validation and 4.2% for trees from Middle 

Yala. Crown area estimated aboveground C stocks in agricultural landscape mosaics of 

Western Kenya to be 20.8 t C ha
-1

. Conversion of biomass (43.3 t ha
-1

) to C was 

achieved by multiplying biomass estimates with the actual C concentration in tree 

samples (48%) determined by element analysis. 

 

Figure 4.3 Variation of the predictive accuracy across tree sizes for equation with crown area alone 

(equation 4.1), crown area and height (equation 4.2), crown area and wood density (equation 4.3), 

crown area, height and wood density (equation 4.4) and the equations developed from trees with 

crown area <20 m
2 
(equation 4.8) and crown area >20 m

2
 (equation 4.9).  
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4.4 Discussion 

4.4.1 Biometric relationships 

Allometric equations based on crown area had a good fit with 85% of the variation in 

AGB explained by crown area. Similarly, crown area explained a large fraction of the 

variability in each biomass component, with the greatest variability observed explained 

in branches. The correlation between crown area and AGB determined in this study 

compares well with R
2
 determined by Sampaio and Silva (2005) for Brazilian semi-

arid Caatinga plants (R
2
 = 0.74). The strength of crown area-AGB relationship was 

dependent on the size category; being weak for trees with smaller crowns. Trees of 

different sizes have variable crown geometry due to interplant competition and 

particularly in agricultural landscapes due to management impacts, e.g. pruning, with 

higher relative impact on smaller trees. This underlines that the precision of crown area 

models would be of significance if constructed from trees selected by crown area and 

not by DBH, as it was done in this study. The high R
2
 value for crown area-branch 

biomass relationship endorses crown area dynamics being more closely related to 

crown biomass than to trunk dynamics. However, exceptions clearly exist particularly 

in agricultural landscapes, where trees are commonly pruned and in some cases tree 

crowns intersect with each other. The strong relationship between crown area and 

DBH indicate that stem diameter is an important indicator of crown size. 

The lower accuracy in predicting leaf biomass is likely to be caused by highly variable 

leaf phenology and the smaller amount of leaf biomass, 2.9% of the TTB. The high 
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relative error also corresponds to the observation that crown area accounts for only 

60% of the variability in leaf biomass (R
2
 = 0.60). The presence and absence of crowns 

that intersect and the influence of management through pruning can easily lead to an 

uneven relationship between crown area and stem biomass. Management influence on 

crown area can also be brought about through certain planting patterns. For example, 

trees growing under competition have small irregular crowns compared to those 

growing in open spaces with the tendency of developing regular widespread crowns, 

which in turn has implications on foliage biomass. Predictions of biomass from small 

crowns turned out slightly poorer because of the high variability in these small-crown 

trees. Smaller trees can be reached more easily and are more prone to interventions 

through management compared to larger trees. The impacts of human interventions on 

crowns in the study area i.e. lopping the branches for certain large-DBH trees 

increased the variability of crown areas in larger trees, particularly for trees with crown 

area greater 60 m
2
. Thus, a model based on crown area can attain similar biomass 

predictions as a DBH model only under the conditions that the target trees follow a 

rather uniform distribution of crowns and diameters. This is the case of the non-

harvested trees for which the crown area model produced a relatively small bias. 

4.4.2 Performance of crown area equations  

Equation 3.1 overestimating AGB by 22.5% might be explained by less variability in 

AGB explained by crown area (R
2
 = 0.86) relative to the variability in AGB explained 

by DBH (R
2
 = 0.98). The relationship between crown area and biomass is likely to 
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have been affected by the greater heterogeneity in terms of species diversity and 

silvicultural interventions. A total of 16 different species were destructively sampled 

while 20% of all trees evaluated were pruned. The misjudgment of biomass by our 

equation confirms previous suggestions that species-specific crown area allometries 

could provide more accurate estimates of biomass than mixed-species equations (Sah 

et al., 2004). Prediction of AGB using crown area can be improved by adding height 

and wood density as additional explanatory variables. Adding height to the equations 

improved model fit and reduced model bias by about 6 and 7 %, indicating that crown 

area alone majorly explains variation associated with lateral branching while height, 

although currently only estimated by experimental and costly means of remote sensing, 

e.g. lidar, provides explanation to variation associated with extension growth (Halpern 

et al., 1996). This is consistent with findings by Sah et al. (2004) that crown area in 

combination with height could be used to estimate AGB. Similar trends have been 

observed in DBH based equations, indicating that height and also wood density 

improves model accuracy (Chave et al., 2005). The suitability of mixed species 

equation by Sah et al. (2004), 222.3121.0446.0 HcaBM   for AGB estimation using 

crown area (ca) and height (H) was not tested because it was designed for shrub-like 

trees and had lower allometric coefficients.  

Uncertainties in using crown area based models may be related to the variability in the 

relationship between crown area and biomass. The relationship between crown area 

and biomass is dynamic due to the competition between neighbouring trees and 

silvicultural interventions. Silvicultural treatments such as irrigation, fertilizing, 
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thinning and initial spacing can influence crown structure leading to temporal and 

spatial variations in AGB. Modifications of tree canopies by silvicultural interventions 

and variations in climatic and edaphic factors result in changes in AGB, which in turn 

lower the consistency of crown area allometries (Drake et al., 2003). This uncertainty 

can be minimized by using equations that adequately capture the variability of 

populations being studied, either by using species-specific equations or mixed species 

equations from an appropriate group (Sah et al., 2004). While most studies recommend 

models with fewer variables because of practicality of use, equations with multiple 

variables such as the one developed in this study maybe less sensitive to variations in 

plant form associated with site and age.  

4.5 Conclusion 

Crown area-based allometries established in this study provide unique information that 

is highly relevant and very scarce for agricultural mosaics. Although obtaining remote 

sensing information on height is still a technical challenge and information on wood 

density is not possible to obtain from remote sensing, these parameters improve the 

accuracy of crown area based equations and should be included when available. The 

equations developed in this study should be applied with caution, especially when 

extrapolating beyond the range of the regression data or when applying them in 

environments greatly different from those found in Western Kenya. 
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CHAPTER FIVE 

5.0 BELOWGROUND AND TOTAL TREE BIOMASS ESTIMATION 

5.1 Introduction  

Trees in agricultural landscapes play an important role in the global carbon cycle as 

sinks for C. Their roots hold significant amounts of biomass, mostly sequestered in 

coarse roots, while C in fine roots is rather dynamic due to their high turnover. Upon 

decomposition these roots directly transfer C into the soil, where it may be stored in 

the medium term. Despite the huge potential of the BGB fraction for C storage, data on 

its distribution is generally very limited and methods for BGB estimation are poorly 

established and not standardized for different land-use systems (Mokany et al., 2006). 

BGB is commonly estimated using direct approaches such as cores or pits for fine 

roots and excavation for coarse roots or indirect approaches using allometric equations 

or RSs. The choice of the method used depends on the vegetation type, site condition, 

desired accuracy and available resources. The excavation method is the most robust 

approach for tree vegetation (Niiyama et al., 2010). Nevertheless, it is limited with 

regard to the extent to which roots can be unearthed. Extraction of roots with 

increasing distance from the stem in farmlands can lead to disproportionate destruction 

of farmers‟ crops or adjacent trees. In this case, the whole root is not excavated; 

missing segments are estimated through extrapolation. 
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Various methods are available for estimating biomass of roots not captured by 

excavation. Spek and van Noordwijk (1994) proposed estimation of total root size 

using proximal root diameters. This approach requires details on branching patterns of 

roots (van Noordwijk and Mulia, 2002) and has been successfully used to estimate root 

length (Ong et al., 1999; Smith, 2001) and biomass (Ozier-lafontaine et al., 1999). 

Allometric equations could also be used to estimate missing root biomass by relating 

the diameter of the point cut at the end of the root to its biomass (Niiyama et al., 2010). 

While destructive sampling provides the most accurate method for estimating BGB, 

the method is expensive, labour intensive and time consuming, hence BGB is often 

reported as a proportion of AGB using allometric relations or RS (Mokany et al., 

2006). The reliability of RS as predictor of BGB has long been questioned since RSs 

are affected by edaphic factors (Keith et al., 2000), differ among vegetation types (Luo 

et al., 2005), vary between plants of different ages (Laclau et al., 2000) and are 

affected by silvicultural interventions (Eamus et al., 2000).  

Default IPCC values (IPCC, 2006) are widely used to estimate BGB in places without 

regionally valid or species specific RSs. The application of broadly derived forest-

based RSs to agricultural landscapes is constrained by factors influencing biomass 

allocation in trees, which abound in these landscapes and tend to vary from site to site. 

For example, trees in farms are managed through pruning and coppicing, and 

periodically benefit from silvicultural practices such as fertilization or irrigation that is 

intended to improve crop production. In Sub-Saharan Africa and particularly in 

Eastern Africa, only a few studies have been conducted on BGB (Henry et al., 2011). 
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Previous work (Ong et al., 1999; Smith, 2001) tackled even aged, small diameter trees 

grown on single sites. At present, no study has been undertaken digging up entire roots 

at landscape scale in Eastern Africa and particularly at this scale in a highly 

heterogeneous agricultural context. A certain risk may thus be associated with 

vouching for the validity of available allometries for use in East African agricultural 

landscapes, since they were developed from data derived from non-agricultural 

vegetation and are therefore likely to misjudge biomass in agricultural landscapes if 

used without prior validation. 

This study was undertaken to develop local generic equations and improved RSs for 

estimating BGB in agricultural landscapes in Western Kenya. The specific objectives 

of the study were to: 

i. Develop allometric equations for estimating BGB in agricultural landscapes;  

ii. Develop allometric equations for estimating TTB in agricultural landscapes; 

iii. Derive improved root-to-shoot ratios for trees in agricultural landscapes; 

iv. Determine the suitability of published allometric equations and root-to-shoot 

ratios recommended for tropical tree species, 

5.2 Method 

Allometric equations for estimating BGB were built using DBH, AGB and RCD as 

primary predictor variables and height or wood density as supporting variables to 

DBH. Measurement procedures for DBH, height, RCD and wood density are described 

in section 2.4. Biomass sampling to determine above- and below-ground dry weights is 
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outlined in section 2.5. The following equations were built using GLM, and 

transformed to allometric power function equations, baXY  ,where Y is the dependent 

variable, X is the independent variable, a is the intercept and b is the slope. 

)ln()ln( AGBbaBGB  ………………………….………………..…..........Equation 5.1

)ln()ln( DBHbaBGB  ………………………….….……………….……Equation 5.2 

)ln()ln( RCDbaBGB  ………………………….……….………….....…Equation 5.3 

)ln()ln()ln( HcDBHbaBGB  ………………………….……………..Equation 5.4 

)ln()ln()ln(  cDBHbaBGB ………………………….……………...Equation 5.5 

)ln()ln()ln( cacDBHbaBGB  ………………………….…………….Equation 5.6 

Allometric equations were also built using BGB data not corrected for unexcavated 

roots. 

)ln()ln( AGBbaBGB correctednot  …………………………..……………....Equation 5.7 

)ln()ln( DBHbaBGB correctednot  ………………………….……………….Equation 5.8 

)ln()ln( DBHbaBGB correctednot  ………………………….……………….Equation 5.9 

A similar approach was used to derive equations for estimating TTB using DBH and 

RCD as main predictors and height and wood density as variables supporting DBH.  

)ln()ln( DBHbaTTB  ………………………….….……………….......Equation 5.10 

)ln()ln( RCDbaTTB  ………………………………...…………………Equation 5.11 

)ln()ln()ln( HcDBHbaTTB  ………………………….……………..Equation 5.12 

)ln()ln()ln(  cDBHbaTTB ………………………….…………..…Equation 5.13 

)ln()ln()ln( cacDBHbaTTB  ………………………….……………..Equation 5.14 
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All equations were developed using a sample size of 66 trees (training set) and an 

additional 6 trees for validation. 

5.3 Results 

5.3.1 Biometric relationships 

Belowground biomass of the harvested trees was 8.8 t ha
-1

, accounting for 20.4% of 

the TTB and equivalent to 25.5% of harvested AGB. The fraction of coarse root 

biomass not captured by excavation was estimated to be 38.9%. This bias varied 

greatly per species, ranging from below 30% in Eucalyptus spp, G. robusta and Ficus 

spp to over 60% in A. mearnsii, Bridellia micrantha, Jacaranda mimosifolia, M. indica 

and Persia americana (Appendix). The unexcavated root biomass was estimated to be 

2.7 t which is about 12.5% of the total BGB. Thus, a volume of 2 m radius and 2 m 

deep around a tree only represents about 87.5% of total BGB, particularly for larger 

trees whose roots spread widely and deeply.  

Diameter at breast height and AGB showed a strong correlation with BGB and 

explained over 95% of the variability observed in BGB (Figure 5.1). Although the 

relationship between DBH and root biomass was not linear for the entire dataset, a 

linear relationship (R
2
 = 0.90) best described the correlation for larger trees 

(DBH >40 cm) compared to a power function relationship (R
2
 = 0.86). Root collar 

diameter and DBH had a strong correlation with TTB, explaining 93% and 96% of the 

variability observed in TTB (Figure 5.2). Although both DBH and RCD were 
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significant predictors of TTB (P<0.001), greater variability was observed in the RCD-

BGB relationship compared to the DBH-BGB relationship. 

 

Figure 5.1 Regressions of belowground biomass (BGB) as a function of (a) diameter at breast height, 

and (b) aboveground biomass. Exc. BGB indicates total tree biomass corrected for roots not extracted 

 

Figure 5.2 Regression of total tree biomass (TTB) and belowground biomass (BGB) as a function of 

(a) root collar diameter, and (b) diameter at breast height 
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Root wood density values ranged from 0.28 to 0.76 g cm
-3 

with a mean±SE of 

0.51±0.01 and median of 0.50 g cm
-3

. Wood density data was normally distributed 

but tended to aggregate between 0.5 and 0.6 g cm
-3

. There was a general increase in 

wood density with increasing DBH (Figure 5.3a). A direct comparison of wood 

density of roots to wood density of aboveground parts of the same tree showed 

moderate correlation (Figure 5.3b), both for stem (R
2
 = 0.62) and branches 

(R
2
 = 0.49). Analysis of variance showed significant differences between root wood 

density and wood density of stem and branches (P<0.05). 

 

Figure 5.3 Scatter plots showing (a) the variation of wood density across trees of different sizes, and 

(b) a direct comparison of wood density of root with that of aboveground parts, stem and branch 

5.3.2 Root-to-shoot ratios 

Root-to-shoot ratios for all the 72 trees harvested ranged from 0.12 to 1.11 with a 

mean±SE of 0.32±0.02, coefficient of variation (CV) of 51% and a median of 0.28. 
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The RS values tended to aggregate between 0.20 and 0.40. Variability of RS showed 

significant differences (P<0.001) among the 3 sites examined. The Lower Yala had 

higher RS values with respect to the mean (0.45±0.05), median (0.39±0.05) compared 

to the Middle (mean = 0.31±0.02, median = 0.27±0.02) and Upper Yala 

(mean = 0.23±0.02, median = 0.19±0.02). The corresponding mean values derived 

from data not corrected for unexcavated root biomass were 0.39±0.05, 0.27±0.02 and 

0.19±0.02 for Lower, Middle and Upper Yala, respectively. This trend is concomitant 

with mean RS values for dominant species in each site i.e. M. lutea, (RS = 0.53±0.11) 

in Lower, E. camaldulensis (RS = 0.34±0.03) in Middle and A. mearnsii (RS = 

0.17±0.01) in Upper Yala. RSs decreased with increasing DBH and AGB (Figure 5.4). 

Variability was greater in trees with smaller DBH, <40 cm than trees with larger DBH. 

Most heavily pruned trees or coppices had consistently high RS values (>0.5). 

 

Figure 5.4 Variability of root-to-shoot ratios across (a) aboveground biomass, (b) diameter at breast 

height, and (c) root collar diameter. 
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5.3.3 Allometric equations for belowground biomass 

Equation 5.1 and 5.2 overestimated the biomass of harvested trees by 13.9 and 10.2% 

respectively, while equation 5.3 over-predicted biomass by 35.4% (Table 5.1). Height 

was not a significant predictor variable in the equation while wood density was 

(P<0.05). The use of height data as additional explanatory variables did not improve 

model fit while wood density data improved model fit by 3.9%. Height and wood 

density data did not provide significant reduction of the bias associated with the 

diameter only equation. Equations derived from data not corrected for missing biomass 

for the three primary predictor variables, DBH (equation 5.7), AGB (equation 5.8) and 

RCD (equation 5.9) underestimated biomass by 11.3, 48.4 and 49.6%, respectively.  

RS mean developed in this study overestimated biomass by 15.3% while the RS 

median underestimated BGB by less than -1%. The equation of Cairns et al. (1997) 

and Mokany et al. (2006) underestimated root biomass by 34.7 and 20.9%, each. 

Assessment of the relationship between actual measured biomass and the biomass 

predicted by various functions showed that equation 5.1 produced results close to those 

obtained from the IPCC default RS, and that the RS median overestimated biomass, 

while the equations by Mokany et al. (2006) and Cains et al. (1997) underestimated 

biomass (Figure 5.5). 
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Table 5.1 Allometric coefficients for estimating BGB using AGB (equation 5.1), DBH (equation 5.2), 

RCD (equation 5.3), DBH and height (equation 5.4), DBH and wood density (equation 5.5) and DBH, 

height and wood density (equation 5.6) 

Equation a b c d R
2
/R

2
adj P-value RE % 

Equation 5.1 

SEE 

0.490 

0.153 

0.923 

0.026 

  
0.954 <.001 13.9 

Equation 5.2 

SEE 

0.048 

0.199 

2.303 

0.059 

  0.960 <.001 10.2 

Equation 5.3 

SEE 

0.024 

0.354 

2.283 

0.095 

  0.921 <.001 35.4 

Equation 5.4 

SEE 

0.055 

0.223 

2.416 

0.097 

-0.191 

0.134 

 0.959 0.123 9.4 

Equation 5.5 

SEE 

0.087 

0.347 

2.257 

0.063 

0.611 

0.273 

 0.961 0.027 10.1 

Equation 5.6 

SEE 

0.095 

0.353 

2.357 

0.100 

-0.165 

0.131 

0.575 

0.273 

0.961  9.5 

Equation 5.7 

SEE 

0.413 

0.160 

0.926 

0.027 

  
0.948 <.001 -11.3 

Equation 5.8 

SEE 

0.040 

0.212 

2.311 

0.063 

  0.952 <.001 -48.4 

Equation 5.9 

SEE 

0.019 

0.355 

2.294 

0.095 

  0.919 <.001 -49.6 
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Equations 5.7, 5.8 and 5.9 uses AGB, DBH and RCD as predictor variables but are 

derived from data not corrected for missing root biomass 

 

Figure 5.5 Comparison between the actual biomass and the biomass predicted by allometries 

developed in this study (equation 5.1, 5.1 and RS median) and published allometries recommended for 

tropical species. 

Allometric equations and RSs developed in this study overestimated BGB of small 

trees, DBH <10 cm by >35% (Figure 5.6). Equation 5.1 overestimated BGB across all 

size classes except for DBH 40-60 cm. Equation 5.2 consistently overestimated 

biomass slightly while equation 5.3 grossly overestimated BGB of small trees by 96% 

(DBH 2.5-10 cm), 32% (DBH 10-20 cm) and 41% (DBH 20-30 cm). The performance 

of the RS mean was highly variable across diameter classes, while the RS median 
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predicted BGB with minor error, <10% across all the diameter classes. All published 

equations underestimated BGB for all tree size categories except the equation of 

Mokany et al. (2006), which overestimated BGB for small trees, DBH <10 cm.  

 

Figure 5.6 Performance of biomass functions developed in this study and published biomass functions 

(IPCC default RS and Mokany et al. 2006) recommended for tropical species. 

The error discrepancy between biomass predicted by published equations and the 

actual field-measured biomass increased with tree size. The accuracy of the equations 

tested varied across the three sites evaluated, with moderate errors for Middle, high 

negative errors in Lower and high positive errors in Upper Yala (Figure 5.7). 

Equation 5.2 is considered the most suitable equation as it estimated BGB with 
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relatively low error across the three sites; and specifically across trees of different sizes 

and each site of the three sites.  

 

Figure 5.7 Accuracy of biomass functions across the three sites evaluated: (a) allometric equations and 

RSs developed in this study and (b) published allometries recommended for tropical species.  

5.3.4 Allometric equations for total tree biomass 

Equation 5.10, 458.2)(124.0 dbhTTB   predicted TTB with a bias of 6.1% while equation 

5.11, 367.2)(077.0 rcdTTB   underestimated TTB of harvested trees by 39% (Table 5.2). 

Although height was a significant predictor variable in the equation compared to wood 

density (P<0.05), the inclusion of height and wood density as additional explanatory 

variables to equation 5.10 did not improve model fit. The predictive accuracy of 

equation 5.10 and 5.11 show variation across the different size classes (Figure 5.8). 
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Equation 5.10 was consistent and conservative in estimating TTB across the size 

classes except for DBH <10 cm, where biomass was overestimated by 14.3%.  

Table 5.2 Allometric coefficients for estimating total tree biomass using DBH (equation 5.10), RCD 

(equation 5.11), and DBH in combination with height (equation 5.12), wood density (equation 5.13) and 

both height and wood density (equation 5.14).  

Equation a b c d R
2
/R

2
adj AIC P-value RE % 

Equation 5.10 

SEE 

0.1237 

0.1240 

2.4583 

0.0369 

  
0.99 

 <.001 
6.1 

Equation 5.11 

SEE 

0.0771 

0.3387 

2.3668 

0.0909 

  0.93  <.001 39 

Equation 5.12 

SEE 

0.1324 

0.1399 

2.5151 

0.0610 

-0.0954 

0.0839 

 0.98 94 0.194 6 

Equation 5.13 

SEE 

0.2811 

0.1868 

2.3481 

0.0373 

0.6734 

0.1249 

 0.96 68 <.001 4.2 

Equation  5.14 

SEE 

0.2861 

0.1912 

2.3719 

0.0579 

-0.0383 

0.0714 

0.6640 

0.1267 

0.98 70 <.001 14.2 
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Figure 5.8 Performance of (a) equation 5.10, and (b) equation 5.11 across trees of different diameters, 

and (c) the comparative performance the two equations across the three sites.  

Conversely, equation 5.11 overestimated the biomass of smaller trees by 114.5% 

(DBH <10 cm), 70.7% (DBH <20 cm) and 27.9% (DBH <30 cm); but underestimated 

the biomass of larger trees (DBH >60 cm) by 7.3%. Equation 5.10 stably estimated 

biomass across all three sites with conservative estimates observed in the Lower (RE 

<1%) and Upper Yala (RE = -2.5%) and moderate overestimates in the Middle Yala 

(12.6%). Contrary, RCD overestimated biomass by 38.6, 53.4 and 9.1% for Lower, 

Middle and Upper Yala. 

5.3.5  Representative landscape biomass: implication of tree dimensions 

Equation 5.1 and 5.2 estimated representative landscape BGB to be 10.9±0.01 and 

11.5±0.01 t ha
-1

, respectively while the mean RS estimated representative landscape 

BGB to be 10.5±0.06 t ha
-1

. The equations by Cairns et al. (1997) and Mokany et al. 

(2006) estimated representative BGB to be 6.1±0.03 and 8.9±0.05 t ha
-1

 whereas the 

IPCC default RS yielded an estimate of 8.7±0.05 t ha
-1

. Representative BGB estimated 
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by various equations is consistent with the validation tests done on harvested trees, 

indicating that existing allometric equations recommended for tropical species would 

generally underestimate BGB in Western Kenya. Using the 0.48% actual C content 

determined by element analysis for harvested trees, representative landscape 

belowground tree C was estimated at 5.0±0.01 t C ha
-1

.  

Biomass is held in the few large trees found in the landscape (Figure 5.9). Small trees, 

DBH <10 cm constituted 65.6% of all trees encountered in the landscape but held only 

6.4% of the estimated BGB. Conversely, larger trees (DBH ≥40 cm) represented 2.4% 

of the trees surveyed in the landscape but held un-proportionally high amounts 

(43.1%).  

 

Figure 5.9 The distribution of (a) non-harvested trees measured according to diameter class and their 

share of estimated belowground biomass, and (b) belowground biomass estimated by published 

equations for trees of various size categories 
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The analysis of bias in small and large trees underscored the influence of tree size, 

particularly of large individuals. The 14% RE for the small trees (DBH <10 cm) by 

equation 5.10 leads to overestimation of TTB by about half a ton of C (0.4 t C) 

whereas a similar error (-14%) on larger trees (DBH >60 cm) by equation 5.11 results 

in underestimation of C stocks by 1.8 t C. Equation 5.10 estimated representative 

landscape TTB to be 47.1 t ha
-1

, thus, agricultural mosaics of Western Kenya hold 

22.6 t C ha
-1

 in standing trees. 

5.4 Discussion 

5.4.1 Belowground biomass captured by excavation  

The proportion of BGB after correcting for missing root biomass relative to AGB of 

26% in this study is closer to the average of 24% proposed by Cairns et al. (1997) for 

tropical forests. Management practices and availability of nutrients and water in 

agricultural landscapes greatly influence the growth form of trees, and therefore these 

factors may have significantly affected the proportion of BGB relative to AGB. Resh 

et al. (2003) captured 75% of the coarse roots within 1 m
2
 area centred on the tree 

stump (maximum DBH, 25 cm) in eucalypt plantations in Tasmania, Australia. The 

high biomass encountered in the study could also be attributed to the sampling 

approach taken, which captured most of the roots and minimized the need for 

extrapolation in many cases. 
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This study acknowledges that the 2 m radius (from the edge of the tree stump) and 2 m 

depth excavated is below the extent and maximum rooting depth of larger trees. 

However, given that root biomass reduces sharply with increasing distance from the 

tree stump (Green et al., 2007) and that whole stumps were unearthed, the chosen area 

captured the majority of the root biomass. Vertically, procedures employed captured 

most roots along the soil profile between 0.4-2 m depth. This is consistent with 

observations by Schenk and Jackson (2002) that globally 50% of all roots are within 

the upper 0.3 m while 95% of all roots are within the upper 2 m of the soil profile. The 

remaining unexcavated root biomass was estimated by an allometric relationship 

between biomass of captured roots and their respective distal diameters, thus whole 

root biomass was estimated. The proportion of coarse root biomass not captured by 

excavation determined in this study (38.9%) accounted for 12.5% of the total BGB and 

was less than 23% given by Niiyama et al. (2010) as the amount by which total BGB 

will be underestimated if correction for missing roots is not done.  

5.4.2 Variability of root-to-shoot ratios 

The median RS of 0.28 obtained in this study is similar to the mean RS recommended 

by IPCC for subtropical dry forests with shoot biomass >20 t ha
-1

 (IPCC, 2006) but 

lower than RS of 0.56 for the same vegetation type with shoot biomass <20 t ha
-1

. The 

mean (0.32) and median RS (0.28) obtained in this study is lower than the average RS 

reported for conifers in Great Britain, RS = 0.36 (Levy et al., 2004) and mangroves, 

RS = 0.60 (Komiyama et al., 2008). Conifers in the temperate and mangroves in the 
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intertidal zone require a bottom-heavy shape for survival. The high RS obtained in this 

study is attributed to management influence, particularly pruning (20% of the trees 

sampled were managed through pruning) and coppicing commonly practiced in 

agricultural landscapes. For example, farmers often cut branches to reduce the size of 

the crown to minimize tree-crop competition for light; an intervention which reduces 

the amount of AGB relative to BGB. Studies have attributed lower RS values to 

sampling methods, where root biomass is underestimated with most research 

extracting roots to a depth of 1 m within the radius of 1 m from the tree center (Ren et 

al., 2009; Green et al., 2007).  

Variation of RS across the 1000-2000 mm rainfall gradient confirms that RSs depend 

on ecological zonation and suggest a shift from the 4:1 shoot-to-root ratio used as 

IPCC (2006) default value for humid tropics towards 3:1 for semi-arid tropics. 

Differences in site conditions, particularly soil type and precipitation may account for 

the variation in RS among the three sites. This is in agreement with the general trend of 

decreased C allocation to belowground with increased nutrient and water availability 

(Keith et al., 2000). More favorable soil conditions and higher annual precipitation in 

Middle and Upper Yala are expected to have enhanced shoot biomass at the expense of 

root biomass. A similar trend was observed by Mokany et al. (2006) and Luo et al. 

(2005) supporting the hypothesis that RS decreases with increase in soil moisture 

content (Gower et al., 1992). The high RS in Lower Yala can also be related to less 

water and nutrient availability associated with coarse soils in the area compared to 

finer soils of Middle and Upper Yala (Mokany et al., 2006). The higher CV for Middle 
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and Upper Yala reflects greater heterogeneity in terms of species composition and 

management influence. Variation in RS across the sites is also indicative of decreasing 

root biomass with increasing altitude, a trend that was also observed by Luo et al. 

(2005). Species distribution is another possible influence on the lower RS in Upper 

(dominant species: A mearnsii; RS = 0.17) and the high RS in Lower Yala (dominant 

species: M. lutea; RS = 0.53). RS decreased (to a rather low but stable level) as shoot 

biomass (and also DBH) increased, a trend also observed by Mokany et al. (2006) and 

Cairns et al. (1997) and linked to buildup of biomass in AGB components as the tree 

grows (Laclau et al., 2000).  

5.4.3 Performance of developed and existing biomass functions 

Aboveground biomass explained 95% of the variation in BGB, a value comparable to 

R
2
 = 0.93 given by Mokany et al. (2006) for forests and woodlands but higher than 

R
2
 = 0.83 reported by Cairns et al. (1997). The strong correlation between AGB and 

BGB has often been explained by the root biomass basically being the extension of the 

stem underneath and its divergence into large roots (Resh et al., 2003). In this study the 

stem held more than 50% of the total AGB. The regression of BGB as a function of 

DBH yielded a high R
2
 (0.96), indicating that diameter accounted for most of the 

variation observed in BGB. The R
2
 of 0.93 obtained in this study for the RCD-TTB 

relationship is higher than 0.73 reported by Bastien-Henri et al. (2010) for tropical 

species grown under differing regional climates across the Isthmus of Panama.  
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The results show that BGB could be estimated from aboveground tree parameters such 

as DBH and AGB, while AGB itself also being a derived parameter. Equation 5.1 

based on AGB of harvested trees predicted BGB with about 85% accuracy while 

equation 5.2 based on DBH predicted BGB with about 90% accuracy. This study 

considers equation 5.2 to address most directly and adequately the principle of 

conservativeness than equation 5.1, which requires C projects to strictly curb 

overestimation. Equation 5.3 misjudged BGB of harvested trees by 35.4% and greatly 

overestimated the biomass of small trees, thus would likely overestimate representative 

biomass when used in a landscape dominated by small trees such as those in Western 

Kenya. While RCD may be a useful parameter to estimate BGB in areas dominated by 

coppices or when trees are already cut down and only stump dimensions are available, 

the high bias associated with equation 5.3 shows that the parameter may greatly 

misjudge biomass in agricultural landscapes. Equation 5.2 and 5.3 had almost identical 

power coefficients but more than a factor 2 difference in intercept, suggesting a strong 

taper between RCD and DBH especially for larger trees and also for coppices. 

However, the strong taper may have been occasioned by the greater uncertainty in 

measuring RCD in larger trees compared to DBH measurements. 

Including height as an additional predictor variable did not improve R
2
, similar to 

findings by Brassard et al. (2011) for a range of species from the boreal forests of 

Ontario, Canada. Instead, wood density data improved model fit by 3.9 % but did not 

improve the predictive accuracy of the diameter-only equation. Disaggregation of error 

along different tree sizes greatly influenced the accuracy of allometric equations as 
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biomass was disproportionately held in larger trees. Given that most of the biomass 

(e.g. 47%) is held in few larger trees (2%), it is imperative to get estimates of larger 

trees correctly (Brown, 1997). While the equations developed in this study considered 

trees of varying ages, age-specific allometric equations have been recommended in 

stands that are heavily dominated by small trees (Fatemi et al., 2011). 

The study found that using IPCC recommended equations by Cairns et al. (1997) and 

Mokany et al. (2006) would underestimate biomass in agro-ecosystems by 34.7 and 

20.9% respectively. Thus the representative C stocks estimated for the landscape by 

the two equations (2.9±0.01 and 4.3±0.01 t C ha
-1

) are far below the value determined 

by equation 4.2 (5±0.01 t C ha
-1

) and the conservative value determined by the median 

RS (4.9±0.01 t C ha
-1

). The differences between estimates from published and 

developed equations are likely caused by site conditions influencing the biomass 

partitioning between above- and below-ground or the differences in sampling 

methodologies (Brassard et al., 2011). The differences in the performance of the 

equation of Mokany et al. (2006), Cairns et al. (1997) and the ones developed in this 

study are indicative of the different ecosystems that the respective studies covered. A 

similar case was also encountered for estimation of AGB using the equation of Brown 

(1997) and Chave et al. (2005) where the description of the climatic preconditions was 

misleading with regard to the area studied (chapter 3).  
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5.4.4 Equations for estimating total tree biomass 

The lower RMSE values of equation 5.10, for estimating TTB using DBH show that 

it is superior to equation 5.11 that uses RCD, although the relative errors across DBH 

classes are similar. Although equations 5.10 estimated TTB with high precision 

across all tree size classes and across all three sites, it remains challenging to 

precisely estimate the biomass of small trees due to the inherent variability of 

biomass in these trees. Small (young) trees would commonly not have a well-

developed root system yet, which renders them much more vulnerable to (or at least 

dependent on) edaphic factors such as nutrient and water supply. A problem that 

would even out quite a bit once they establish properly, grow in size and overcome 

these existential limitations. The variability of mature trees is caused by management 

practices like selective harvesting of stems, e.g. for poles, lopping of branches to 

provide fuelwood and pollarding to reduce light competition with crops. Such 

interventions can alter biomass without directly affecting DBH. Differences in 

biomass estimation by equation 5.7 and equation 5.8 were more substantial for larger 

trees, DBH >50 cm. Equation 5.8 had large deviations from the actual biomass 

showing that RCD is less suited for estimating TTB in agricultural landscapes 

compared to DBH. The differences were pronounced in Lower Yala and in smaller 

trees which are more subject to management practices and more susceptible to 

edaphic limitations compared to larger trees 
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Although equations 5.7 predicted TTB with high precision across tree size classes and 

in all three sites evaluated, it is difficult to predict the biomass of small trees with high 

precision because of the variability of biomass in these trees. This variability is brought 

about by management practices like selective harvesting of stems e.g. for poles, 

looping of branches to provide wood for fuel and pollarding to reduce competition 

with crops, which can change biomass without changing DBH. Differences in biomass 

estimation by equation 5.7 and equation 5.8 (derived from data not corrected for 

missing root biomass) were magnified in larger trees, DBH >50 cm. Equations 5.8 had 

large deviations from the actual biomass showing that RCD is less suited for 

estimating TTB in agricultural landscapes compared to DBH. The differences were 

pronounced in Lower Yala and in smaller trees which are subject more to management 

practices compared to larger trees.  

Although increased accuracy is expected from introducing more variables particularly 

to generic allometric models, adding tree height and wood density data did not 

improve model fit or accuracy in this case. A possible explanation was natural 

differences in canopy architecture among species and modifications of tree canopy by 

management (Segura et al., 2006).This contrasts several reports that height improves 

model fit (Bastien-Henri et al., 2010; Chave et al., 2005); although many reports 

concur that height adds little to the proportion of variance explained, since height and 

diameter are in themselves closely correlated (Ketterings et al., 2001). The models 

were validated per site to assess whether the models had to be applied across the Yala 

basin only or could also be used for small projects at singular specific sites. The 
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equation developed for estimating TTB gives better estimates for individual sites and 

is also sufficient for biomass estimation across the whole basin. Representative 

landscape TTB predicted by equation 5.7 (22.6 t C ha
-1

) corresponds to the sum of 

AGB (5.27 t C ha
-1

) and BGB (17.36 t C ha
-1

) predicted by separate equations 

constructed for above- and below-ground biomass C from the same data; hence 

equation 5.7 can be used to obtain accurate estimates of TTB without first estimating 

AGB, then using AGB to estimate BGB and finally summing up the two estimates to 

approximate TTB. 

5.5  Conclusion 

Regionally valid generic equations for BGB and TTB were constructed from a 

representative sample of trees randomly selected and stratified by size class from 

agriculturally dominated landscapes without considering health, damage or dominance 

of the trees. Allometric equations with DBH as predictor variable and the median RS 

provided a more accurate means for estimating BGB and are recommended for use in 

Western Kenya due to their conservative way of estimating biomass. The equations 

presented in this study for BGB will allow for estimation of BGB in agricultural 

landscapes without the high cost of excavating the root system. Furthermore, the 

equation developed for TTB will significantly improve the accuracy of estimating 

biomass C in agricultural landscapes without the intermediate steps of determining 

above- and below-ground biomass fractions. 
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CHAPTER SIX 

6.0 BIOMASS DYNAMICS FOR DOMINANT EUCALYPTUS  

6.1 Introduction   

Fast growing species such as eucalyptus have been introduced in many tropical 

countries to mitigate the dwindling supply of wood, especially for timber and biomass 

fuel (FAO, 2011). In East Africa, eucalyptus species are common in farmed landscapes 

and the preferred species in managed plantations (Kituyi et al., 2001). Eucalyptus is 

popular because of its fast-growing nature, multiple uses and importance as a „cash 

crop‟(FAO, 2011). The higher proportion of eucalyptus in agricultural landscapes is 

largely due to greater attention given to trees on farms, mainly because of their ability 

to couple economic with social services and environmental benefits. Despite the 

acknowledged importance of eucalyptus trees, there is little knowledge about the 

amount of C that will be emitted to the atmosphere when areas dominated by these 

species are converted to other land use. 

In Kenya, the majority of timber and non-timber wood products are obtained from 

farm estates, presenting an opportunity for farmers to have access to additional income 

from their land (Kiplagat et al., 2011). To meet the high demand for tree products and 

services, considerable efforts have been focused on conserving and also increasing 

trees in the landscape. Two kinds of eucalyptus trees exist on Kenyan farms: (1) 

naturalized eucalyptus introduced from Australia in the colonial era and (2) eucalyptus 
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hybrids introduced from South Africa. Eucalyptus plantations provide raw material for 

industries, such as sawmilling, pulp and charcoal while eucalyptus in agricultural 

landscapes supply timber, poles, building material and fuelwood, both for domestic 

and commercial purposes. Despite considerable efforts made in increasing trees on 

farms, quantities of major biofuel trees continue decreasing in Kenya (Kituyi et al., 

2001). This decline is attributed to high demand for timber, food crop cultivation, 

human settlement and harvesting trees for fuelwood (FAO, 2011). 

The IPCC (2003) provides methodologies for estimating tree C stocks. The IPCC 

default values are normally used where further data is not available, choosing a Tier 1 

approach. This practice uses equations provided at a global scale, stratified by eco-

climatic zones such as those cited in (IPCC 2006). Chapter 3 and 5 of this study 

showed that application of broadly derived forest-based equations to trees in 

agricultural landscapes yields biased estimates. Such bias can be minimized by 

applying Tier 2 or Tier 3 approaches, where country specific models determined for 

local conditions are used. In this case, equations that adequately address unique project 

circumstances are either developed or chosen from literature. Since tree species differ 

in architecture and wood gravity (Chave et al., 2004), species specific equations are 

necessary to produce reliable biomass estimates (Henry et al., 2011). However, 

insufficient species specific equations exist, particularly in sub-Saharan Africa where 

less than 1% of the tree species have country-specific equations (Henry et al., 2011). 

Since it is not practical to fell trees to develop equations for each species, and because 

destructive sampling is generally not acceptable for rare species or in areas where the 
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eventual objective is to conserve trees, biomass equations that cover trees with 

comparable architecture could be developed. This study aimed to create biomass 

equations for eucalyptus species in Western Kenyan agricultural landscapes. The 

specific objectives of the study were to: 

i. Develop allometric equations for estimating biomass in Eucalyptus species;  

ii. Determine biomass distribution in the above- and below-ground 

compartments. 

6.2 Method 

Data from 48 destructively sampled trees consisting of E. camaldulensis (29), E. 

grandis (11) and E. saligna (8) were pooled to develop biomass equations for 

eucalyptus species encountered in the Middle Yala site. Two assumptions were made: 

(1) trees in the same genus exhibit similarities in growth form and that the allometry of 

woody biomass for trees growing under similar conditions does not differ significantly 

within the same genus (Fatemi et al., 2011; Senelwa and Sims, 1998). Allometric 

equations for estimating biomass of different components were built using DBH and 

RCD as the main predictors, and height, wood density and crown area as supporting 

variables to DBH. Measurement procedures for DBH, height, RCD, wood density and 

crown area are described in section 2.4. Biomass sampling to determine above- and 

below-ground dry weights is outlined in section 2.5. 

Allometric equations were developed using 42 trees, validated using six trees from 

each of the eight holdouts as explained in section 2.6.1. All equations were built using 
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GLM and transformed to allometric power function equations, baXY   where Y is the 

dependent variable, X is the independent variable, a is the intercept and b is the scaling 

exponent. The following equations were developed using DBH as the predictor 

variable: 

)ln()ln( DBHbaAGB  ……..…………………………………………….Equation 6.1 

)ln()ln( DBHbaBGB  ……..…………………………………………….Equation 6.2 

)ln()ln( DBHbaTTB  ……..…………………………………………….Equation 6.3 

)ln()ln( DBHbaBM stem  ……..………………………………………….Equation 6.4 

)ln()ln( DBHbaBMbranches  ……..……………………………………….Equation 6.5 

)ln()ln( DBHbaBM leaves  ……..………………………………………....Equation 6.6 

A similar approach was used to develop equations with RCD as the predictor variable. 

)ln()ln( RCDbaAGB  ……..………………………………………..……Equation 6.7 

)ln()ln( RCDbaBGB  ……..……………………………………………..Equation 6.8 

)ln()ln( RCDbaTTB  ……..………………………………………..…….Equation 6.9 

)ln()ln( RCDbaBM stem  ……..…………………………………………Equation 6.10 

)ln()ln( RCDbaBMbranches  ……..………………………………………Equation 6.11 

)ln()ln( RCDbaBM leaves  ……..………………………………………..Equation 6.12 

The effect of height, wood density and crown area as supporting parameters to DBH 

was tested as follows: 

)ln()ln()ln( HcDBHbaAGB  ………………………….…..………...Equation 6.13 

)ln()ln()ln(  cDBHbaAGB ………………………………………..Equation 6.14 

)ln()ln()ln( cacDBHbaAGB  ………………………….……………Equation 6.15 
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)ln()ln()ln( HcDBHbaMBstem  ………………….…….…..……..…Equation 6.16 

)ln()ln()ln(  cDBHbaBM stem ………………….……………….…Equation 6.17 

)ln()ln()ln( cacDBHbaBM stem  ………………………….…………Equation 6.18 

)ln()ln()ln( HcDBHbaBMbranch  ………………………….…..……Equation 6.19 

)ln()ln()ln(  cDBHbaBMbranch …………………………….………Equation 6.20 

)ln()ln()ln( cacDBHbaBMbranch  ………………………….….…….Equation 6.21 

6.3 Results 

6.3.1 Biomass equations 

Figure 6.1 shows the regression of biomass as a function of (a) DBH and (b) RCD for 

estimating biomass of different fractions. Diameter at breast height was strongly and 

significantly correlated with above- and below-ground biomass, accounting for 98 and 

96% of the variation in above-and below-ground biomass fractions, respectively 

(Figure 6.1a). Likewise, the regression of stem and branch biomass as a function of 

DBH was significant (P<0.001) with high R
2
 values of 0.97 and 0.95. Foliage, 

however, had a moderate correlation, indicating that DBH accounted only for about 

85% of the variation in leaf biomass. RCD was more closely related to BGB 

(R
2
 = 0.91) than to AGB (R

2
 = 0.88) and explained 87, 86 and 82% of the variations 

observed in stem, branch and leaf biomass, respectively (Figure 6.1b). 
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Figure 6.1 Regression of biomass as a function of (a) diameter at breast height, and (b) root collar 

diameter for aboveground biomass (AGB), stem biomass, belowground biomass (BGB), branch 

biomass and leaf biomass. 

Tree height showed a strong positive correlation with DBH, a near normal 

distribution and greater variance for harvested trees of larger diameter, DBH >30 cm 

(Figure 6.2). The height distribution for non-harvested trees was negatively skewed, 

with more than 58 and 35% of the trees measured having height values between 

10 and 20 m, respectively. A moderate correlation was observed between DBH and 

height of harvested (R
2
 = 86%) and non-harvested trees (R

2
 = 69), respectively. 

 



102 

 

 

Figure 6.2 Relationship between height and diameter at breast height for (a) harvested trees and (b) non-

harvested trees sampled in Middle Yala, Western Kenya. The vertical bars represent height distribution 

across diameter classes based on stratification of DBH into <10, 20, 30, 40 and >50 cm. 

Empirical allometric coefficients for estimating biomass of different components based 

on DBH and RCD are presented in Table 6.1. DBH was a significant predictor variable 

for all compartments (P<0.001) and estimated stem and AGB with a small bias (2.5%). 

However, DBH overestimated belowground and branch biomass by 30% and foliage 

biomass by 16%. RCD was a significant predictor variable for all biomass component 

(P<0.001) but overestimated most component biomass by about 30%, except foliage 

biomass which was estimated with a small bias of 3.5%. 
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Table 6.1 Allometric coefficients for estimating aboveground biomass (equation 5.1, 6.7), belowground 

biomass (equation 6.2, 6.8), total tree biomass (equation 6.3, 6.9), stem (equation 6.4, 6.10), branches 

(equation 6.5, 6.11) and leaves (equation 6.6, 6.12) using (a) DBH, and (b) RCD. 

 Equation a b SEE(a) SEE(b) P-value R
2
 Bias % 

a) Equation 6.1 0.085 2.471 0.090 0.029 <.001 0.994 2.5 

 Equation 6.2 0.029 2.432 0.205 0.065 <.001 0.962 29.9 

 Equation 6.3 0.114 2.463 0.093 0.029 <.001 0.993 6.0 

 Equation 6.4 0.058 2.496 0.109 0.035 <.001 0.991 3.6 

 Equation 6.5 0.009 2.652 0.272 0.087 <.001 0.947 30.0 

 Equation 6.6 0.042 1.847 0.217 0.069 <.001 0.938 16.1 

b) Equation 6.7   0.040 2.458 0.274 0.079 <.001 0.941 29.2 

 Equation 6.8 0.011 2.469 0.233 0.067 <.001 0.971 30.7 

 Equation 6.9 0.051 2.461 0.247 0.071 <.001 0.962 24.2 

 Equation 6.10 0.027 2.483 0.276 0.079 <.001 0.943 28.5 

 Equation 6.11 0.004 2.631 0.435 0.125 <.001 0.872 94.4 

 Equation 6.12 0.024 1.830 0.298 0.085 <.001 0.899 3.5 

Local generic equations developed in chapters 3 and 4 for estimating above- and below 

ground biomass in agricultural landscapes overestimated biomass by 10 and 47.8%, 

respectively. Whereas both equations from chapter 3 and 4 and the equations 

developed for Eucalyptus generally overestimated biomass (Figure 6.3), the equations 

for Eucalyptus still yielded estimates about twice more accurate than those from the 

generic equations. 
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Figure 6.3 Comparisons of biomass predictions by equations developed for Eucalyptus and the mixed 

species equation developed in chapter 3 and 4 for estimating (a) aboveground biomass (AGB), and (b) 

belowground biomass (BGB). 

The diameter-based equation for stem and AGB showed low bias, <5% across the 

diameter classes above 10 cm DBH (Figure 6.4). However, DBH showed variation in 

error disaggregation across the size classes for belowground biomass, overestimating 

the biomass of trees with DBH <20 cm by over 30%. Diameter based equations for 

estimating branch and leaf biomass showed high and variable bias across tree size. 

Allometric equations based on RCD overestimated all components by over 20% for 

most diameter classes except for trees with DBH >50 cm, where biomass was 

estimated with bias of about 10%. 
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Figure 6.4 Disaggregation of relative error associated with equations for estimating (a) AGB, (b) BGB, 

(c) TTB, (d) stem biomass, (e) branch biomass and (f) leaf biomass using DBH and RCD. 

Height was a significant predictor variable only for aboveground, stem and branch 

biomass (Table 6.2; P<0.05). Crown area was a significant predictor variable for only 

branch biomass while wood density was not a significant predictor variable for any of 

the components. Height, crown area and wood density did not improve R
2
, which was 

already high (R
2
 = 0.99). AIC showed that height was a more suitable proxy for the 

estimation of AGB of Eucalyptus (AIC = 46) than wood density (AIC = 61) and 

crown area (AIC = 62).  
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Table 6.2 Allometric equations for estimating (a) aboveground biomass (b) stem biomass (c) branch 

biomass using DBH and height (equation 6.13, 6.16, 6.19), DBH and wood density (equation 6.14, 

6.17, 6.20) and DBH and crown area (equation 6.15, 6.18, 6.21), respectively. 

 Equation a b c P-value R
2
adj AIC RE % 

a) Equation 6.13 

SEE 

0.067 

0.143 

2.307 

0.083 

0.260 

0.123 0.041 0.994 46 2.3 

 Equation 6.14 

SEE 

0.095 

0.161 

2.464 

0.032 

0.120 

0.106 0.268 0.991 61 -9.0 

 Equation 6.15 

SEE 

0.079 

0.114 

2.476 

0.062 

0.016 

0.038 0.680 0.991 62 -13.1 

b) Equation 6.16 

SEE 

0.032 

0.141 

2.089 

0.082 

0.646 

0.122 <.001 0.994 43 -79.4 

 Equation 6.17 

SEE 

0.072 

0.201 

2.477 

0.040 

0.184 

0.133 0.175 0.989 74 -8.0 

 Equation 6.18 

SEE 

0.044 

0.131 

2.663 

0.071 

-0.085 

0.044 0.059 0.988 80 3.3 

c) Equation 6.19 

SEE 

0.018 

0.428 

3.164 

0.249 

-0.803 

0.370 0.036 0.948 43 27.6 

 Equation 6.20 

SEE 

0.008 

0.505 

2.662 

0.102 

0.028 

0.334 0.934 0.933 53 13.6 

 Equation 6.21 

 

0.015 

0.310 

2.138 

0.167 

0.347 

0.103 0.002 0.933 53 -0.5 
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6.3.2 Biomass apportionment 

The contribution of different components to the total tree biomass varied considerably. 

AGB accounted for 78.9% of the total tree biomass, with the stem, branches and leaves 

contributing 73.7, 22.3 and 4.0% to AGB, respectively. Much of the tree biomass was 

held in the stem, which constituted up to 58.2% of the total tree biomass, while 

branches and leaves contributed 17.6 and 3.2% of the total tree biomass. While the 

proportion of stem biomass was almost constant for all sizes classes, the proportion of 

branch biomass showed, on average, an increase with tree size; although the trend was 

not continuous. Changes in biomass allocated to leaves complemented those observed 

in the stem and branches inversely. The proportion of foliage declined from 14.3% in 

small trees (DBH <10 cm) to 3.3% in high biomass trees (DBH >50 cm). At any 

diameter, the variation in the proportion of AGB in the stem was large and constant. 

The BGB of the harvested trees accounted for 21.1% of the total tree biomass, yielding 

an overall RS of 0.27, which varied across the diameter classes. The biomass of coarse 

roots not captured by excavation was estimated to be 0.85 Mg, which is 9.2% of the 

total BGB for harvested trees. RS ranged between 0.14-1.07 with a mean±SE of 

0.31±0.02 and median of 0.28. RS for individual trees showed a slight decrease with 

increase in tree size (Figure 6.5). High RS values, >0.5 were mainly associated with 

coppiced trees as indicated in Figure 6.5a plotted against DBH, which is less sensitive 

to the effects of silvicultural intervention than RCD. 
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Figure 6.5 Variability of root-to-shoot ratio (RS) for individual trees across (a) diameter at breast height, 

and (b) root collar diameter. The vertical bars in (a) indicate the mean RS for each of the diameter 

classes. 

The equations with DBH alone, 471.2)(085.0 dbhAGB   and 432.2)(029.0 dbhBGB 

estimated biomass held in Eucalyptus to be 18.7±0.2, and 5.6±0.1 t ha
-1

 for above and 

below-ground fractions, respectively. The stems, branches and leaves were each 

estimated to hold 13.8±0.02, 2.7±0.004 and 1.3±0.001 t ha
-1

. This trend is consistent 

with the respective proportions outlined for above- and below-ground segments of 

harvested trees. Biomass estimates obtained from DBH-only equations for different 

components were converted to C stocks using the 47.5% C fraction determined for the 

Eucalyptus by element analysis. Eucalyptus in agricultural landscapes of Western 

Kenya were then estimated to stock about 9.0±0.01 t C ha
-1

 in AGB, most of which 

was held in the stem, 6.6±0.01 t C ha
-1

; while belowground systems contribute  about 
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2.7±0.003 t C ha
-1

. In total, Eucalyptus dominated agricultural landscapes in Western 

Kenya stock 11.7±0.01 t C ha
-1

 in live tree biomass. 

6.4 Discussion 

6.4.1 Biomass equations  

Diameter at breast height and RCD had a strong positive relationship with all biomass 

components evaluated (R
2
 = >0.90). Such high R

2
 have been reported by Zewdie et al. 

(2009) for branches (0.79), stems (0.94) and AGB (0.86) in E. globulus plantations 

from central Ethiopia. The relationship between leaf biomass and DBH was weaker 

than the comparable stem-biomass relationship, possibly due to leaves (and also 

branches) being ephemeral tissues that are affected more by changes that alter 

allometric relationships (Rubilar et al., 2010). For example removal of large branches 

to provide wood, improve form and reduce competition with other trees and crops is a 

common practice in agricultural landscapes. Such silvicultural operations, together 

with interplant competition and other factors modify the canopy size of individual trees 

and may affect the allometric relationships between diameter and component biomass.  

The DBH alone was the best independent variable for describing the different 

biomass components, estimating stem, aboveground and total tree biomass with 

about 95% accuracy. BGB was overestimated by both RCD and DBH based 

equations, confirming previous reports that BGB is a major component of 

uncertainty in measuring total tree biomass (Keith et al., 2000). While RCD is a 
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useful parameter for estimating BGB, especially when trees are already cut down and 

only stump dimensions are available, the bias associated with RCD as proxy for 

biomass in this study was high and showed greater variability across tree size than 

DBH. This high and inconsistent bias could be attributed partly to uncertainties in 

measuring RCD where stems tend to exhibit a much more fluted cross section. This 

is even more pronounced with increasing tree size. The biomass of branches and 

leaves could not be accurately estimated using DBH possibly due to the ephemeral 

nature of these components (Rubilar et al., 2010). 

The biomass of small trees was generally overestimated, though the tendency to 

overestimate biomass dropped with increasing tree size. A similar observation was 

made by Pérez-Cruzado and Rodríguez-Soalleiro (2011) on Eucalyptus nitens 

plantations in northwestern Spain. This indicates that error in biomass estimation 

depends on the average tree size. Other authors have reported the importance of tree 

size in both formulation of allometric equations and the range to which the equations 

are applied (Chave et al., 2004; Pérez-Cruzado and Rodríguez-Soalleiro, 2011). The 

biomass values of the smallest trees strongly affect the values of the model parameters 

in the allometric relation (Chave et al., 2001), while at the same time it is difficult to 

accurately estimate the biomass trees with DBH >20cm, which form more than 80% of 

the trees encountered in agricultural landscapes of Western Kenya (chapter 3). Local 

generic equations developed in chapters 3 and 5 overestimated AGB by 10% and BGB 

by over 45%. This underscores the need for genera- or species- specific equations and 



111 

 

indicates that genetic differences in tree architecture may have a significant influence 

on metric scaling relationships. 

Height, wood density and crown area data did not improve the relationship between 

DBH and any of the tree biomass components. Whereas including height as an 

additional predictor variable to DBH has been reported to increase R
2
 for E. globulus 

coppice plantations (Zewdie et al., 2009) and other mixed species equations 

(Ketterings et al., 2001), findings from this study showed that addition of height data 

neither improved R
2
 nor significantly reduced RE in diameter based equations. This 

observation is in line with several conclusions that height, as an additional predictor, 

only adds marginal value to the predictive ability of diameter-based equations (Basuki 

et al., 2009; Nelson et al., 1999).  

Height was a significant predictor of stem biomass, and has been found to improve 

stem biomass estimates elsewhere (Pérez-Cruzado and Rodríguez-Soalleiro, 2011). 

However, height did not improve accuracy of predicting AGB due to the compensatory 

relationship between stem and canopy mass (Montagu et al., 2005). This compensatory 

relationship results in similar AGB for trees of the same diameter, but different 

partitioning in leaves, branches and stems. Compensatory relationships have been 

observed in E. nitens plantations in northwestern Spain (Pérez-Cruzado and 

Rodríguez-Soalleiro, 2011) and Eucalyptus pilularis from seven contrasting sites in 

Australia (Montagu et al., 2005). 
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Wood density marginally improved model fit for AGB and stem biomass but did not 

improve the predictive power of the diameter based equations, contrary to findings in 

chapter 3 and previous reports (Basuki et al., 2009; Chave et al., 2005). This could be 

due to much lower variation in wood density relative to tree size between trees 

sampled; hence stem wood density did not appear to affect the allometric relationship 

between DBH and biomass of aboveground parts (Montagu et al., 2005). Height and/or 

wood density allows for the influence of site factors and differences between tree 

species. The influence of these parameters was not obvious in trees evaluated, possibly 

because they belong to the same genus with one species, E. camaldulensis dominating 

the dataset, and were sampled from a site with near similar climatic and soil 

conditions.  

6.3.2 Biomass apportionment 

Eucalyptus species have the potential to contribute a significant amount of C 

sequestered in Western Kenya‟s agricultural landscapes since they represent 59.4% of 

all trees encountered in the Kakamega area (chapter 3). This dominance has been 

observed for decades (Senelwa and Sims, 1998). The stem biomass accounted for the 

largest proportion of individual tree AGB across all size classes, followed by branches 

and leaves. This division agrees with results from the studies on growth of E. globulus 

in central Ethiopian  plantations (Zewdie et al., 2009) and E. nitens plantations on the 

coast of Arauco, Chile (Muñoz et al., 2008); both studies reported the stem biomass 
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proportion greater than 75% of AGB. The proportion of leaf biomass (4%) determined 

in this study compares well with 3% given by (Muñoz et al., 2008). 

The proportion of stem biomass increased slightly with tree size, consistent with the 

biomechanical requirements of the stem; as tree biomass increases, the stem increases 

in diameter in order to provide greater mechanical strength in support of the increasing 

weight. Whereas the biomass of stems, branches and BGB generally increased 

proportionally with tree size, the biomass of leaves tended to decrease. Previous 

studies have also demonstrated that trees allocate proportionally less biomass to leaves 

and more to stem as they age, resulting in a decrease in leaf biomass with tree size 

(Zewdie et al., 2009).  

Belowground biomass is an important C pool for many vegetation types and land-use 

systems identified by the IPCC (2006). The proportion of BGB relative to TTB 

determined in this study (21%) is slightly lower than 26% given by Cairns et al. 

(1997). The RS median value determined in this study (0.28) is identical to the RS 

median determined for mixed species in chapter 5 but higher than the IPCC default 

value of 0.24±0.14 for tropical hardwood species (Cairns et al., 1997). The median RS 

was preferred to the RS mean (0.31±0.02) to reduce the influence of large outliers in 

the dataset arising from coppices or pruning. However, both the RS mean and RS 

median are lower than 0.38 given by Eamus et al. (2002) for an open Eucalyptus forest 

in a savanna in north Australia. Trees are more likely to have invested less in BGB as 

water and nutrients are not considered limiting in the area. The low RS compared to 
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other studies may indicate that a high biomass proportion was allocated to stems, 

branches and leaves as a possible mechanism to confer a competitive advantage, 

allowing trees to out-compete neighbors by growing in height and expanding crown 

area to shade out competitors. 

6.5 Conclusion 

Diameter based equations predicted biomass of most compartments with 95% 

accuracy, and with about the same relative error across trees of different sizes. Given 

that DBH is easy to measure with high accuracy, the equations provide a basic tool for 

estimating biomass and C stocks of eucalyptus for purposes such as bio-energy and C 

sequestration. These equations can be applied to Eucalyptus in agricultural landscapes 

in similar agro-ecological zones, provided that tree growth parameters fall within 

similar ranges of the sampled population. 

  



115 

 

CHAPTER SEVEN 

7.0  FRACTAL BRANCH ANALYSIS 

7.1 Introduction 

Forest inventories are generally conducted to survey standing trees. Because standing 

trees cannot be weighed to gauge their mass, biomass equations provide one of the 

only ways for estimating C stocks in standing trees (West, 2009). However, the main 

method for developing biomass equations is to engage in destructive sampling, where 

trees are felled, measured and weighed and then an equation is fit to the resulting data. 

The main limitation of the standard allometric approach is cutting trees to make an 

equation. Further, the trees used to fit an equation may not be representative of other 

trees to which the resulting equation will be applied. Most improvements to biomass 

equations focus on the second problem (Brown, 1997), but the most direct way to 

solve this problem would be to cut down many more trees across a broader area to 

assure representativeness. Unfortunately, the latter would worsen the first problem and 

is generally unacceptable in areas where the ultimate goal is to conserve trees. 

Functional branch analysis (FBA) is a model-based method that combines 

measurements of tree branches with other data to characterize the fractal geometry of 

tree form and derive allometric scaling coefficients of equations that relate DBH to 

biomass (van Noordwijk and Mulia, 2002). A major advantage of FBA over the 

traditional approach is that the coefficients of a biomass equation can be derived from 
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measurements of standing trees, without the need to cut them (Santos-Martin et al., 

2010). FBA model derives a proxy of tree mass from proxy estimates of whole tree 

volume (which are derived from tree stem and branch measurements) that are 

combined with inputs describing the density of tree volume components (e.g., stems 

and twigs). It is not expected that the FBA method could produce better estimates of 

biomass equation coefficients than those derived from destructive sampling, but it may 

be able to produce very similar equations without the need to fell trees, and thus could 

be broadly applied to develop localized biomass equations, especially in situations 

where destructive sampling is impossible or undesirable. 

In this study, standard biomass equations derived from destructive sampling of trees in 

Western Kenya were directly compared to equations derived from FBA for the same 

trees to see how substitutable the FBA method is for the standard destructive sampling 

approach for estimating the coefficients of biomass equations. The specific objectives 

were to: 

i. Derive allometric scaling rules for estimating AGB on suitable tree species 

from agricultural landscapes of Western Kenya; 

ii. Determine the similarity or difference of estimations from FBA equations to 

estimations from equations built using standard sampling techniques. 

7.2 Methods 

Measurements for FBA were collected on destructively sampled trees following 

procedures suggested by van Noordwijk and Mulia (2002). The tree is conceptually 
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divided into “links” which occur between branching junctures, except the first link, 

which is between the ground and the first fork. Starting with the first link, the lower 

(proximal) diameter (Dproximal), the diameter in the middle of the link (Dmiddle), the 

diameter at the distal end of the link (Ddistal) and length of each link were measured 

with calipers and tape measure respectively. The diameters of each link were measured 

once and again in a perpendicular direction and averaged to account for non-circular 

branch shapes. At the first branch point, the continuing main stem was defined and 

then the largest „branch‟ (usually the second largest link at a forking point) was 

selected and followed to a terminal (usually leaf-bearing) shoot at the end of a path 

through the tree‟s branching network, repeating the measurements on each successive 

link in the path. Then, returning to the main stem link, it was measured and followed to 

the next branching point; this process was repeated, moving up the tree, following and 

measuring links to different terminal shoots. The successive, non-repetitive link 

number and its parent link number were noted and recorded. Link measurements were 

repeated to the tip of the tree (or in some cases for a minimum of about 100 

measurements per tree) ending at the ultimate leaf bearing twigs. 

The diameters and lengths of links at each ramification that were not followed to a 

terminal twig were also measured to allow for calculation of the scaling factor (p) for 

the change in total cross-sectional area at branching points: 




n

i

AB DDp

1

22 /  , where DB 

and DA are the stem diameters above and below a branching point and n is the number 

of branches at that point; and an „allocation‟ parameter (q) describing the relative size 
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of the largest link at a branching point:   




n

i

AA DDMaxq

1

22 / , where Max(DA) is the 

diameter of the largest stem after a branch point (Spek and van Noordwijk, 1994; van 

Noordwijk and Mulia, 2002).   

FBA is written in Visual Basic language and has been packaged into an Excel®-

based software package called WanFBA (Santos-Martin et al., 2010), which can be 

used to take the prerequisite data and convert it into the necessary biomass equation. 

FBA takes the input data (Santos-Martin et al., 2010) and generates a proxy mass 

through FBA rules (van Noordwijk and Mulia, 2002) using some stochastic 

modeling, so that FBA does not generate the same results with each run. The woody 

part of the tree was classified into “twigs”- defined as links with diameter less than 2 

cm; “branch-links” between 2 and 8 cm; and “wood-links” above 8 cm. FBA ver. 1.4 

allows for these subcategories to be defined to allow for differences in scaling 

relationships for different-sized branches. 

7.3 Results 

7.3.1 Inputs for the FBA model 

Input variables from measurements of the felled trees are shown in Table 7.1. In 

addition to mean values for these parameters, FBA requires probability distributions 

for p and q, and that both p and q are independent of link diameter to allow for the use 

of fractal branching rules to derive allometric scaling coefficients. The correclation 
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coefficients between p and link diameter and q and link  diameter (Figure 7.1) were 

very low indicating the general independence of p and q and link diameters. This lack 

of correlation between p and q parameters and link diameter has also been reported in 

earlier studies (Salas et al., 2004 Smith, 2001).  

Table 7.1 Tree attributes and input variable values used to parameterize the FBA model. Other than 

the number of sample trees (n), table values are means {SD}, [range]. 

Parameter  A. mearnsii E. camald. E. grandis M. indica 

n 8 15 7 8 

DBH (cm) 25.3{10.36} 43.5{16.63} 15.8{8.18} 37.9{22.98} 

Number of Branches 2.09 {0.31} 2.10 {0.48} 2.13 {0.38} 2.5 {0.73} 

p 1.03 {0.25} 1.20 {0.42} 1.23 {0.48} 1.0 {0.31} 

q 0.77 {0.15} 0.79 {0.42} 0.81 {0.14} 0.6 {0.16} 

Minimum diameter (cm) 0.37 [0.47] 0.31 [0.40] 0.30 [0.39] 0.37 [0.37] 

Twig length  (cm) 22.5{16.3} 32.5{27.6} 29.7{26.5} 18.7{15.2} 

Branch length  (cm) 49.9{31.9} 92.3{81.1} 65.6{70.3} 38.5{29.7} 

Wood length (cm) 82.5{63.8} 159.0{243.8} 80.4{112.3} 62.7{57.7} 

Wood density (g cm
-3

) 0.63{0.09} 0.53{0.08} 0.42{0.02} 0.56{0.05} 

The distribution of p values revealed a wide range of values, but with modal values 

tightly centered around p = 1, which is the theoretical value based on da Vinci‟s rule, 

indicating a conservation of cross-sectional area across branching points, especially for 

larger links which approached a fairly constant p value. However, the distributions 
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were distinctly skewed toward higher p values (> 1.25, Figure 7.1), particualrly for 

twigs and smaller branches. This much greater cross-sectional area below a fork 

relative to the sum of the cross-sectional areas of ramifications above a fork could be 

generally attributed to dieback of terminal twigs or epicormal branching in cases where 

larger links have higher values for p (e.g., E. camaldulensis).  

 

Figure 7.1 Dispersion of the scaling factor p (above) and allocation parameter q (below) as a function of 

link diameter for A. mearnsii, E. camaldulensis, E. grandis/saligna and M. indica. 

The distribution of q values, which are bounded between 0 and 1, was fairly wide with 

most values of q > 0.5, which indicates a perfect fork; q < 0.5 indicates that there were 

more than two branches at the branching point and q > 0.5 indicates that one branch 

was larger than the others.  For A. mearnsii and M. indica the distribution of q values 

was generally even, while both E. grandis and E. camaldulensis showed a skewness 
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toward higher q values, particualarly for larger links. The latter generally indicates a 

stronger apical dominace for the Eucalyptus spp. than the other two species.  

The remaining parameters required fitting linear regression models to determine the 

intercept and slope of length-diameter relationships for twig, branch, and wood 

components (Table 7.2). The coefficients for branch and wood components „a‟ and „b‟ 

were not used in the FBA model, but were substituted with an intercept „a‟, determined 

as the average of the measured link lengths and a default value zero for the slope „b‟. 

7.3.2 Biomass equations 

Species-specific equations for A. mearnsii, M. indica, and E. camalduslensis derived 

from the FBA model overestimated biomass of harvested trees while the equation for 

E. grandis/saligna underestimated biomass (Table 7.3). Although FBA provides 

allometric coefficients for estimating biomass of branches and foliage biomass, it was 

not possible to validate the accuracy of equations for these components since field data 

did not take into account the size categories of branches, and twigs and leaves; hence 

these components are not described in this study. 
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Table 7.2 Coefficients of linear regression (a, intercept and b, slope) for length-diameter (D-L) 

relationships and the range length used to parameterize the FBA model for twig, branch and wood 

components.  

Link  Parameter A. Mearnsii E. camald. E. grandis M. indica 

Twigs a 6.263 31.305 28.813 6.207 

b 16.610 1.426 1.063 12.656 

Range length 0.447 0.627 0.654 0.506 

R
2
 0.247 0.001 0.001 0.158 

Branches a 49.945 92.340 65.642 38.491 

 Range length 0.458 0.696 0.875 0.569 

 R² 0.088 0.053 0.016 0.056 

Wood a 82.460 159.758 80.439 62.719 

 Range length 0.617 0.768 0.949 0.699 

 R² 0.110 0.119 0.025 0.067 

Single D-L 

relationship 

a 28.84 39.319 31.848 22.87 

b 2.86 7.442 4.7387 2.145 

Range length 0.525 0.696 0.757 0.613 

R² 0.298 0.214 0.073 0.212 
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Table 7.3 The accuracy of allometric biomass equations derived from FBA model and standard 

method for estimating AGB. 

Species Method  Biomass equation bias (%) 

A. mearnsii FBA 530.2110.0 DBHAGB   +9.3 

A. mearnsii Standard 379.2163.0 DBHAGB   
+0.7 

E. camaldulesnis 
 

FBA 456.2121.0 DBHAGB   +33.2
 

E. camaldulesnis 
 

Standard 444.2096.0 DBHAGB   +0.7
 

E. grandis/saligna
 

FBA 336.2084.0 DBHAGB   -19.4
 

E. grandis/saligna
 

Standard 649.2052.0 DBHAGB   +0.6
 

M. indica
 

FBA 559.2089.0 DBHAGB   +20.6
 

M. indica
 

Standard 326.2156 DBHAGB   -8.4
 

Eucalyptus spp FBA 453.2095.0 DBHAGB   +5.2
 

Eucalyptus spp Standard 514.2075.0 DBHAGB   +2.7 

A. mearnsii/M. indica
 

FBA 590.2096.0 DBHAGB   
+28.3 

A. mearnsii/M. indica Standard 280.2021.0 DBHAGB   
+1.7 

Mixed species FBA 464.2104.0 DBHAGB   
+9.7 

Mixed species Standard 454.2101.0 DBHAGB   
+2.5 

A direct comparison of predicted and actual harvested biomass on a 1:1 line shows that 

the FBA derived equation for individual species predicted AGB of smaller trees with 

greater accuracy compared to larger trees which exhibited high variance between the 

actual and predicted biomass (Figure 7.2). The largest discrepancies were found in A. 
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mearnsii and E. camaldulensis while M. indica and E. grandis/saligna showed a 

general good equivalence between the predicted and the measured biomass. 

 

Figure 7.2 Direct comparisons of actual biomass harvested and biomass predicted by equations derived 

from FBA for (a) A. mearnsii, (b) E. camaldulensis, (c) E. grandis/saligna and (d) M. indica. 

The mixed-species equation calibrated with the FBA model was generally precise, 

but overestimated biomass on average, with a bias of about 9.7% (Figure 7.3).  Most 

of the error came from overestimation of the proxy mass of some larger trees by the 

equation. As expected, the standard empirical biomass equation which predicted 
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actual mass from DBH performed considerably better than the FBA-derived 

equation. 

 

Figure 7.3 Correlation between actual harvested biomass and the biomass predicted by the mixed-species 

models derived by FBA model and standard destructive sampling method 

Additionally, comparable trends were observed; both equations overestimated the 

biomass of smaller trees (DBH <20 cm: 15.4 and 8.7%) but estimated biomass of 

larger trees (DBH >20) with high accuracy, bias = 7.8 and 0.4%, respectively. 

However, variations existed in the bias for individual species tested. The FBA derived 

equation underestimated the biomass E. saligna by 19.4%, each, but overestimated the 

biomass of A. mearnsii, E. camaldulensis and M. indica by 9.3, 33.2 and 20.6%, each. 
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Conversely, the standard allometry estimated biomass with a smaller bias, <10% in all 

species. 

The FBA allometry and standard allometry for trees with considered having similar 

form showed contrasting results for the two categories (Figure 7.4). The FBA 

allometry for A. mearnsii and M. indica produced very different results from the 

standard allometry for the same trees, with the FBA-derived equation over-predicting 

biomass for trees of all sizes.  

 

Figure 7.4 Correlation between actual harvested biomass and the biomass predicted by the FBA derived 

allometry and standard allometric approach for trees considered to have comparable branching patterns: 

(a) A. mearnsii and M. indica, (b) Eucalyptus spp (E. camaldulensis and E. grandis) 

The standard allometry (bias = 1.7%) was about sixteen times better than the FBA 

allometry (bias = 28.3%). The FBA allometry for Eucalyptus spp produced results 
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close to those of the standard allometry. However, the standard allometry (bias= 2.7 

%) was almost twice more accurate than the FBA-based allometry (bias= 5.2%). 

7.4 Discussion  

The results of this study suggest that the FBA method of estimating the allometric 

scaling coefficients of tree biomass equations can produce reasonably accurate, mixed-

species equations that are similar to, but less accurate than standard allometric 

equations, and without the need to fell and weigh trees. However, the method worked 

better for trees with simpler branching structures (i.e., Eucalyptus spp.) than for species 

with more complex branching (i.e., M. indica and A. mearnsii). The difference 

between the mixed-species and species-specific FBA allometries indicates that genetic 

differences in branching architecture has a significant influence on allometric scaling 

relationships. Equations derived for trees considered to have similar branching 

characteristics: (i) A. mearnsii, M. indica, and (ii) E. camaldulensis, E. grandis, and E. 

saligna clearly shows that trees which have a more complex branching architecture 

have a more complex allometry and so the biomass equations derived from the FBA 

method are more error prone. Another possibility is that A. mearnsii and M. indica 

might not be a good grouping, if they have very different branching architecture. The 

study did not have enough trees to subdivide the analysis further.  

The scaling coefficient “b” of the resultant biomass equations showed variation among 

tree species evaluated, ranging between 2.4-2.6; thus lower than the proposed universal 

value of 2.66 (West et al., 1999) in A. mearnsii and Eucalyptus spp; while M. indica 
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had an equivalence scaling coefficient of 2.6. The branching patterns of tress influence 

coefficients of the biomass equations, yielding variations in the scaling rule for 

individual tree species around the universal 8/3 rule. The variability of scaling 

coefficient “b” among the species evaluated affected the precision of biomass 

estimates by respective models. The coefficient “b” for mixed species (2.464) was also 

lower than the proposed universal 2.66 (West et al., 1999) but close to 2.454 for the 

equation determined by standard sampling methods. A previous study by Santos-

Martin et al. (2010) also found that FBA-dervied predictions can come close to 

observed biomass across trees for some species, but the latter study did not compare 

FBA-derived predictions to estimates from the standard approach. Thus, FBA appears 

to provide a viable non-destructive approach for generating species-specific equations 

for quantification of AGB in trees for some species. However, a better understanding 

of how the inputs affect the outputs in Wan FBA is certainly needed to improve the 

accuracy of the model, particularly for tree species with more complex crown 

architectures. 

It should be recognized that the measurements of link lengths and branch diameters are 

necessary for parameterizing the FBA model. In this study, such measurements were 

easily obtained because the trees had been felled. Getting the necessary measurements 

on standing trees requires either a professional tree climber to climb and measure the 

various links in the path, or the use of some kind of optical dendrometers. In the former 

case, this could be quite challenging, especially on larger trees and for smaller, upper 

branches where safety could become a major issue. New tools have recently become 
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available which are capable of measuring these branch parameters, such as the  

®Mantax (laser) caliper with „gator eyes‟, for measuring stem and branch (link) 

diameters out of reach, and the ®True Pulse 360° laser rangefinder, for measuring link 

lengths. 

Another issue is the necessity to input wood density estimates. For this study, wood 

density was known for the population because wood samples were lab-analyzed for 

this property from samples taken from the felled trees. In a „non-destructive‟ 

application, either cores would need to be extracted from a sample of trees to obtain 

wood density estimates for the population or published values would have to be 

introduced into FBA. A sensitivity analysis of FBA revealed that a 10% difference in 

wood density input in the model generates an approximately 10% difference in the 

scaling coefficient „a‟ and the resultant biomass estimates, holding all other factors 

constant. This latter result is what would be expected, given that the rest of the 

parameters essentially help generate a proxy volume for the tree, which at a given 

density has a given mass. So, if the actual wood density in the population of interest 

differs by about 10% from a published value for wood density used as an input in 

FBA, the resulting allometric equation will be biased by 10% in the resulting biomass 

estimates.  This argues that a small amount of destructive sampling (i.e., wood coring) 

might be necessary to calibrate the biomass equation using FBA, even if the model 

otherwise produces good estimates from link measurements of standing trees. 
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Another issue regarding practical application of the FBA method is how many links 

need to be measured within trees and how many trees need to be measured to capture 

FBA parameters sufficiently to represent the tree branching architecture for a species 

or species group. The data from this study show that there is a high degree of 

variability both within and between trees for many of the input parameters. As there 

can be an enormous number of branches in a tree, it is not practical to measure every 

branch in every tree to calibrate the FBA method. Van Noordwijk and Mulia (2002) 

suggest at least 50 measurements, but this depends on the acceptable uncertainty level 

that will be associated with the estimates of the coefficients of the allometric equation.  

If the crown architecture of trees of a species or group of species is similar (i.e., 

between tree variation is low), then these measurements can be spread about several 

trees of the same species within a stand or forest to get a species- or species group- 

average for that area. This choice of how many branches to measure within a tree or 

within a stand or forest, depends largely on how the allometric equations are to be 

developed, e.g., species-specific, and how much variation within and between trees is 

expected or observed. 

7.5 Conclusion 

Fractal branch analysis appears to provide a viable non-destructive approach for 

generating species specific equations for quantification of aboveground C in trees. 

However, further adjustments to the approach are needed to improve accuracy. 

Variation in accuracy of the equations developed indicates the need to verify FBA 
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derived models, especially when derived from tree species which differ considerably. 

Efficient, non-destructive sub-sampling methods for obtaining the necessary tree 

measurements of standing trees are therefore needed to calibrate the FBA algorithm. If 

the fractal tree is a good approximate of the form and volume of the average tree to 

which it is applied and the average wood density is a good approximation of the 

density of the average tree, then the FBA method should give very similar results to 

the standard allometric approach.  
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CHAPTER EIGHT 

8.0  CANOPY COVER AND LEAF AREA INDEX  

8.1 Introduction  

Attributes of canopy structure such as canopy cover and leaf area index (LAI) are useful 

input parameters for climate, meteorological or hydrological models. Whereas canopy 

cover is mainly valued using indirect methods (Jennings et al., 1999), estimation of LAI 

on tree or farm scale can be achieved practically by direct methods, which requires 

stripping and measuring of plant foliage (Jonckheere et al., 2004). Indirect methods are 

destructive, laborious, time consuming and expensive, especially if the study area is 

very large (Bréda, 2003). Hence at stand and landscape scale, LAI could be estimated 

effectively using non-destructive systems e.g., fisheye photography (Frazer et al., 1999). 

Hemispherical photography, also known as fisheye photography is a technique for 

assessing canopy structure and light environment beneath plant canopies (Jonckheere et 

al., 2004). The technique entails photograph acquisition in the field, and registration, 

classification and calculation, done using software (Frazer et al., 1999). Photographs are 

taken from below a canopy looking upward using a camera fitted with a special wide-

angle lens (180°). Consistently orienting the camera north allows for subsequent 

analysis of light regimes, which requires modeling the daily sun trajectory. Photographs 

taken under uniform sky conditions provide optimal contrast between the leaves and the 

sky (Frazer et al., 1999). These conditions usually occur when the sky is uniformly 
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overcast, at dawn or at dusk. High resolution digital cameras are commonly used; they 

capture images directly in digital form, eliminating the expense, time and errors 

associated with photographic films and film development (Frazer et al., 2001; 

Jonckheere et al., 2004). A variety of commercial and free software e.g., HemiView 

(Delta-T Device, Cambridge, UK), WinSCANOPY (Regent Instruments, Canada), Gap 

light analyzer, GLA (Frazer et al., 1999) have been developed for processing 

hemispherical imagery.  

This study was designed to estimate canopy attributes for trees in agricultural 

landscapes in Western Kenya using hemispherical photography. The specific 

objectives of the study were to estimate: 

i. Tree canopy cover;  

ii. Effective leaf area index. 

8.2 Methods 

8.2.1 Setting up of photographic equipment 

Canopy cover, defined as the fraction of pixels that do not lie in between crown gaps 

and equivalent to (Jennings et al., 1999) „canopy closure‟, and the effective leaf area 

index (LAIe) of the plots sampled were estimated from images taken by a high-

resolution Nikon CoolPix P5000 (Nikon Corporation, Tokyo, Japan) digital camera 

with an FC-E8 fisheye lens. LAI, defined as half the total area of leaves per unit 

ground horizontal surface area (Jonckheere et al., 2004) was calculated as effective 
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LAI (LAIe) since it does not account for the non-random distribution of foliage and 

includes the sky obstruction by branches and stems (Bréda, 2003). 

Two diagonal transects, each 42.2 m long and intersecting at the centre of the plot were 

set up within all 30 x 30 m plots sampled for biomass (Plate 8.1). Photo-stations were 

positioned every 10.6 m from the start to the end of transects, creating a total of 9 

photo points which translated to 9 images per plot. This systematic spread of sampling 

points ensured a representative cover of the plot. The lens was fixed to the camera and 

the camera mounted on a leveling tripod pointing directly upwards (Plate 8.1).  

   

Plate 8.1 Indicative sampling positions, 10.6 m apart in a 30 x 30 m plot (left) and a camera with 

fisheye lens mounted on a tripod stand (right) for taking fisheye photographs. 

The camera was aligned with the magnetic north by adjusting the tripod corner pins 

and its body leveled by adjusting the bubble levels. Photographs were taken with the 

camera set to automatic mode, highest resolution (3648 x 2736 pixels), automatic 

metering with flash disabled, 100ISO sensitivity, underexposed by 1.0 F-stop and 

images saved in lossless JPEG. Photographs were taken under uniform sky conditions 

͏    ͏ 

 ͏  ͏  

  ͏   

 ͏  ͏  

͏    ͏ 
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to reduce errors due to the interference of direct sunlight where circumstances 

permitted.  

8.2.2 Image analysis 

Photographs were analyzed for canopy openness and LAIe using GLA version 2.0 

(Frazer et al., 1999). GLA is a Windows-based image processing software designed to 

import, display and analyze digital hemispherical photos (Frazer et al., 1999). Images 

were opened and registered to determine the orientation and circular extent of the 

exposure. Configuration settings of some images were edited to reflect the atmospheric 

conditions. Images were thresholded manually to accurately classify each pixel as 

either sky (white) or non-sky (black) pixel and the calculations run to compute the 

canopy structure (Frazer et al., 1999). Plate 8.2 shows a photograph before and after 

setting the threshold.  

   

Plate 8.2 Plot level hemispherical photographs (a) before setting the threshold, and (b) after manually 

setting the threshold value to classify pixels into sky and non-sky regions. The ratio of the canopy-to-

sky is used to approximate effective leaf area index. 

a) b) 
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Because the threshold process is a subjective one, the entire procedure was repeated 

twice more and the mean canopy openness and LAIe computed. Descriptive statistics 

were run to obtain plot means, SE and SD for estimates of canopy cover and LAIe. 

8.3 Results 

A total of 223 photographs from 28 plots were selected for analysis after discarding 

29 photos due to glare and image defects. The mean percent canopy cover of the 

28 plots ranged from 10.9-90.1 and varied spatially among the sites evaluated 

(Figure 8.1). Plots in Middle Yala had the highest mean canopy cover with values 

between 12.6-83.1% followed by those in Lower Yala while Upper Yala plots had 

the least means with values in range from 10.9-90.1% (Table 8.1). Within and 

between site comparisons of the data revealed statistically significant differences in 

mean canopy cover estimates (P<.001). Also, SE was markedly larger for mean 

canopy cover data from Upper (2.9) compared to Middle (2.2) and Lower Yala (2.3). 

Plots with higher stocking or greater canopy cover also had the highest LAIe values. 

The overall mean LAIe determined for the three sites was 0.81 with values in the 

range from 0.01-4.31. LAIe values determined for the Lower, Middle and Upper 

Yala were in the range from 0.01-4.31, 0.01-2.55 and 0.02-3.04, respectively. Higher 

mean LAIe were estimated for the Middle and Lower than Upper Yala site (Table 

8.1). An ANOVA demonstrated that site influences on variance of the sites canopy 

cover were slightly different for measures of LAIe (P<0.05). 
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Figure 8.1 Mean canopy cover and effective leaf area index extracted from photos taken in 30 x 30 m 

plots in the Lower, Middle and Upper Yala sites in Western Kenya. 

 

Table 8.1 Canopy cover and leaf area index determined for the Lower, Middle and Upper Yala sites in 

Western Kenya. Other than the number of sample photographs (n), and the standard deviation (SD), 

table values are means [range]. 

Site n 
Canopy cover Leaf area index 

Mean SD Mean SD 

Lower Yala 70 45.3[75.7] 18.8 0.7[4.3] 0.8 

Middle Yala 112 55.1[77.5] 23.6 1.0[3.0] 0.8 

Upper Yala 41 40.8[72.2] 18.6 0.6[2.5] 0.5 

All sites 223 49.4[79.2] 22.1 0.8[4.3] 0.8 
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8.4 Discussion 

8.4.1 Canopy cover and effective leaf area index estimates 

Canopy cover and LAIe estimated for agricultural landscapes in Western Kenya varied 

across the three sites evaluated. The low canopy cover and LAIe values in the Upper 

Yala are attributed to scant woody vegetation in what is mainly considered cropland, 

while successive low values in Lower Yala reflect intermittent vegetation patterns 

consisting of dense semi-natural bushes on farms, sparsely distributed indigenous 

shrubs and few exotic tree species in the landscape. The relatively high canopy cover 

and LAI values for the Middle Yala area is attributed to the abundance of mono-

specific clusters of eucalyptus woodlots and high tree density on farms in the area. The 

mean canopy cover determined for Lower (45.3%), Middle (55.1%) and Upper Yala 

(40.8%) is higher than the 30% given by Hufkens et al. (2008) for semi-arid woodland 

of the Heihe River basin in arid northwest China. 

Plots with high canopy cover also had high leaf area indices. This concurs with 

previous reports that canopy cover and stand density have a strong linear relationship 

(Asner et al., 2003). The mean LAIe estimated for Lower (0.65), Middle (1.00) and 

Upper Yala (0.59) is well within the range 1.3(SD 0.9) for semiarid landscapes to 

8.7(SD 4.3) for tree plantations (Asner et al. 2003). However, the values are higher 

than 0.22 determined equally by LAI-2000 Plant Canopy Analyzer and Ceptometer for 

arid ecosystems (White et al., 2000). The mean estimates established in this study are 

lower than the global average for tropical deciduous broadleaf forests, 3.9(SD 2.5) as 
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well as tropical evergreen broadleaf forest, 4.8(SD 1.7) given by Asner et al. (2003). 

The LAIe (0.59) estimated for the semi-arid Lower Yala area is in line with (0.58) 

estimated by Hufkens et al. (2008) for semi-arid woodland of the Heihe River basin in 

arid northwest China.  

The large SD for each of the sites indicates great variation in LAIe values (Lower = 

0.53, Middle = 0.83 and Upper Yala = 0.83) and all the three sites (0.80). These 

variations suggest a highly heterogeneous canopy structure in the landscape. 

Variability of LAIe within the plots and across the three sites was possibly influenced 

by the spatial variation of the canopy, growth form of trees and the management 

practices. The presence of non-tree elements such as crops in the Upper Yala might 

have added to the spatial heterogeneity of the canopy. Although canopy cover and 

LAIe values calculated in this study are close to those found in the literature (Asner et 

al., 2003; Hufkens et al., 2008; White et al., 2000); these comparisons must still be 

seen in the context of anthropogenic intervention that has a permanently large impact 

on the spatial distribution of biomass, beyond naturally variable parameters such as 

stand age, species and climatic effects. 

8.4.2 Uncertainties in estimating canopy cover and leaf area index 

Uncertainties in the canopy cover and LAIe measurements determined in this study 

arose from image classification, influence of the slope, sun glares and scattered clouds, 

and the fact that indirect methods generally underestimate LAI. The optimum 

threshold value for differentiating between vegetation and sky patches was set 
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manually. Manual image classification is subjective (Jonckheere et al., 2004) and 

therefore an average of three rounds of analysis was used to minimize the bias arising 

from pixel classification. 

LAIe estimates determined in this study can be used as an estimate of true LAI in 

agricultural landscapes of Western Kenya. LAIe is converted to true LAI by correcting 

for light obstruction from non-leafy canopy material and the effects of foliage 

clumping (Bréda, 2003). However, studies have shown that LAIe estimates from 

indirect approaches could well approximate LAI in broadleaf forests (Asner et al., 

2003). This is because foliage clumping is unlikely to be a significant source of error in 

indirect estimates of LAI in stands of broadleaf species (Chen, 1996; Macfarlane et al., 

2000). Eriksson et al. (2005) also showed that there is minor benefit from making full 

correction for leaf aggregation and woody contribution in deciduous stands.  

8.5 Conclusions 

Hemispherical photography is a potentially promising tool offering an alternative 

means for indirect measurement of canopy attributes also in agricultural landscapes. 

Canopy cover and LAIe varied spatially among the sites evaluated, with high values 

in Middle Yala and lower values in the Lower and Upper Yala, correspondingly. 

These variations suggest a highly heterogeneous canopy structure in the landscape. 

Plots with higher stocking or greater canopy cover also had the highest LAIe values.  

Given that indirect methods are significantly easier to implement and that they can be 

applied repetitively to many studies over very large geographical areas, hemispherical 
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photography could be used as a ground-based method essential for quantifying canopy 

cover and LAIe for calibrating spectral indices. The results are useful and could be 

used later to determine relative changes in canopy cover and LAI within the landscape, 

also describing the impact of land use change trajectories. 
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CHAPTER NINE 

9.0  GENERAL CONCLUSIONS AND RECOMMENDATIONS  

9.1 General conclusions  

Developing allometric equations that are applicable to agricultural landscapes is 

critical for accurate accounting of C stock for REDD++ and for national GHG 

inventories for agriculturally dominated countries. The local generic equations 

developed for estimating AGB (chapter 3) and BGB (chapter 5) are robust and can be 

used to obtain reliable biomass estimates in most agricultural landscapes, both at small 

and large scale. The equations were developed from a sample that was truly 

representative of the population of trees in agricultural landscapes of Western Kenya in 

terms of size and form. The sample included diverse tree species, a wide diameter 

range incorporating larger trees, varied silvicultural practices and a fairly wide 

altitudinal and rainfall gradient. The equations resulted to be practical, requiring DBH 

as the only variable, and were consistently accurate across different locations and trees 

of different sizes. These equations have an advantage over ones requiring height or 

wood density as additional predictor variables of maintaining a sufficient level of 

accuracy, while waiving otherwise tedious additional measurements, hence minimizing 

the inventory cost for estimating tree biomass. 

Although the equations presented in chapter 3 and 5 are generic, three species (E. 

camaldulensis, M. lutea and A. mearnsii) dominated the landscape, rendering the 
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equations region or pseudo-species specific. Applying these equations to vegetation 

types with major differences in abiotic conditions may therefore increase the error 

compared to the levels in this study. The study also established that management 

significantly affects biomass and contributes to the heterogeneity of the landscape; 

hence RSs should be used with care considering soil and management conditions. 

Published equations that could otherwise be considered appropriate for Western Kenya 

misjudged above- and below-ground biomass by between 11-22% and 21-35%, 

respectively. This underscores the need for empirical validation of equations developed 

in different geographical, ecological and management contexts. Factors such as the 

mix of species, the fact that trees in agricultural landscapes are often grown in stands 

that are not closed and may include isolated trees, and that crowns may be cut during 

growth affect the validity of applying equations to agricultural landscapes that have 

been created in other contexts. Studies may also underestimate BGB by up to 12.5%, 

particularly for larger trees, if root biomass is only captured within a 2 m radius and 

2 m depth. Biomass estimates in agricultural landscapes can also be underestimated if 

branches and foliage, which constitute about 33% of the TTB, are excluded from the 

accounting protocol. Similar underestimation could also occur if forest based 

equations, developed from merchantable stem and that omit branches and foliage 

biomass are used to estimate biomass in agricultural landscapes without adequate 

expansion factors. Elsewhere, Chave et al. (2004) discussed the importance of 

estimating biomass of small trees, lianas and bamboo, which may represent 10% of the 
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total AGB stock. This underlines the importance of including all components of live 

biomass in C accounting. 

Chapter 6 demonstrated that species specific equations are more accurate in estimating 

biomass of particular tree species than local generic or global equations. It confirms the 

observation that allometric equations are greatly influenced by tree architecture and 

wood density, which tend to vary among species (Chave et al., 2004). This is 

consistent with results in chapter 7 where differences between the mixed-species and 

species-specific equations derived from FBA are attributed to differences in branching 

architecture. 

Chapters 3 to 6 reveal that accuracy of biomass estimation varies across tree size with 

large errors among small trees (DBH <20 cm) although the largest difference in 

estimated biomass was observed in high biomass trees. Large trees hold most of the 

biomass, which emphasizes the need to assess their biomass correctly. Since larger 

trees in these landscapes are scarce, both cultural and practical restrictions inhibit 

sampling them destructively. This leads to an underrepresentation of larger trees, 

whose inclusion in biomass equations would improve the consistency of the 

allometries for landscapes with bigger trees (Brown, 1997) 

Wood density was found to be the most important additional explanatory variable for 

AGB estimation for the generic equations but not for species specific equation. Height 

and crown area data did not improve model fit substantially. Wood density data from 

inventories should therefore be used where available to improve the accuracy of 



145 

 

biomass estimations, particularly for mixed species or trees from sites with contrasting 

climatic, edaphic or management conditions.  

Chapter 4 demonstrates that crown area can be an effective predictor of AGB, 

especially when supported by height and/or wood density data. Studies have shown 

that crown area and/or height could be used as primary predictor variables, especially 

in low-growing multi-stemmed trees (Halpern et al., 1996; Sah et al., 2004). However, 

challenges of using crown area in biomass estimation abound, ranging from issues of 

measuring crown area accurately to the lack of consistent allometric equations based 

on crown area (Gibbs et al., 2007). The new allometric relations using crown area 

provide valuable information rarely available in agricultural mosaics and may form a 

basis for new generation allometries using crown area as a predictor of AGB. Further 

refinement of equations based on crown area will allow for calibration and validation 

of remote sensing estimates directly where to date crown area was used to first 

estimate e.g. DBH which was then entered into further allometries to yield biomass. 

The study showed that hemispherical photography can be reliably used to derive 

ground-based measurements of canopy cover and LAIe. Canopy cover estimates from 

hemispherical photography could be used to validate cover estimates from aerial 

photographs or satellite images or as a variable in models to predict stand volume from 

aerial photographs. 
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9.2 Recommendations for future work 

While the study achieved the objective of developing allometric equations for 

estimating landscape scale tree biomass in complex agricultural mosaics, the following 

recommendations emerged to improve biomass estimation in agricultural landscapes:  

 Equations presented in this study need to be tested in other areas to determine 

their applicability across a wider range of agricultural landscapes in Eastern 

Africa. 

 A study to relate allometric scaling and tree form and the relationship between 

tree form and remote sensing based allometric scaling is recommended. This 

could be done to determine the suitability of using crown area equations, and 

canopy cover and leaf area index estimates from hemispherical photography to 

validate estimates from remote sensing.  

 This study only evaluated the performance of the equations developed in terms 

of bias in landscape level prediction and prediction of single trees. An analysis 

of error propagation effects that may occur during the scaling process, 

including sampling, measurement errors and errors in the estimates of model 

parameters is recommended. 

 Variability can be high within complex agroforestry systems and productivity 

depends on several factors such as climate, soil properties, stand age, species 

composition and the way the system is managed. A study to determine how 
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these factors affect biomass C in agricultural landscapes could help in 

identifying causal relationships. 

 Further adjustments to the FBA approach is required to improve accuracy 

through the use of efficient, non-destructive subsampling methods for 

obtaining the necessary measurements on standing trees needed to calibrate the 

FBA algorithm. 
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APPENDICE 

a)  b)  c)  

d)  e)  f)  

g)  h)  i)  

j)  k)  l)  

Appendix 2.1 Schematic representation of field events:  (a) cutting a standing tree using a chain saw, (b) 

sectioning the stem, (c) weighing a sectioned stem piece, (d) striped leaves from branches, (e) weighing 

branches, (f) weighing leaves, (g) excavating the root system, (h) unearthed stump (i) splitting a large 

stump (j) weighing a sectioned stump (k), weighing a large root (l) weighing small root pieces. 
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Appendix 3.1 Cross validation for equation 3.1. The average of the parameters from the twelve 

holdouts yields equation 3.1,
472.2

091.0 dbhAGB  . Values of model coefficients (a, b), standard 

error of the estimate (se), coefficient of determination (R
2
) and model bias % are presented.  

 Holdout  a  b SEE(a) SEE(b)  R
2
 Bias %  

1 0.081 2.497 0.129 0.038 0.985 -26.9 

2 0.090 2.470 0.137 0.041 0.982 -4.1 

3 0.089 2.478 0.134 0.040 0.983 -4.1 

4 0.090 2.474 0.135 0.040 0.983 3.1 

5 0.091 2.472 0.133 0.040 0.983 11.6 

6 0.097 2.448 0.127 0.038 0.984 -34.9 

7 0.095 2.458 0.135 0.040 0.983 -11.7 

8 0.090 2.471 0.133 0.040 0.984 -13.5 

9 0.096 2.455 0.123 0.037 0.986 -3.8 

10 0.087 2.488 0.120 0.036 0.987 29.7 

11 0.091 2.471 0.134 0.040 0.983 9.9 

12 0.089 2.478 0.131 0.039 0.984 26.1 
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Appendix 5.1 Estimation of the fraction of root biomass not captured by excavation. Fitted allometric 

coefficients were used to estimate the missing root biomass from the distal root diameters, and 

expressed as a fraction of the calculated biomass (BM %). N describes the number of root pieces per 

species. 

Species  N Log(a) SEE(log(a)) b SEE(b) R
2
 BM %  

Acacia mearnsii 51 -3.328 0.750 2.200 0.330 0.665 62 

Bridelia micrantha 19 -0.6 1.350 1.197 0.560 0.530 61 

Combretum molle 15 -3.601 0.550 2.334 0.230 0.789 37 

Cupressus lusitanica 22 -3.953 0.570 2.017 0.300 0.610 47 

Eucalyptus camaldulensis 234 -3.423 0.210 2.070 0.080 0.767 31 

Eucalyptus grandis 9 -3.708 0.730 1.756 0.400 0.938 29 

Eucalyptus saligna 47 -3.574 0.660 1.975 0.300 0.590 27 

Ficus sp. 6 -7.425 1.300 3.263 0.430 0.811 28 

Grevillea robusta 64 -3.125 0.550 2.090 0.190 0.809 28 

Jacaranda mimosifolia 9 -0.817 1.980 1.104 0.630 0.754 62 

Mangifera indica 51 -3.611 0.690 2.286 0.290 0.721 65 

Markhamia lutea 65 -3.425 0.380 1.880 0.160 0.809 38 

Perseia americana 11 -4.913 0.590 2.625 0.250 0.753 61 

Syzygium cordatum 33 -3.559 1.010 2.312 0.310 0.614 58 

Syzygium cuminii 11 -3.575 1.000 1.914 0.380 0.881 44 

Trilepisium madagasc. 11 -2.338 2.330 1.648 0.770 0.678 38 
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Appendix 5.2 Cross validation for equation 5.1. The average of the parameters from the twelve 

holdouts yields equation 5.1, 
923.0490.0 AGBBGB  . The intercept (a), scaling exponent (b), 

standard error of estimates (se) and coefficient of determination (R
2
) are provided 

Holdout  a b SEE(a) SEE(b) R
2
 

holdout 1 0.420 0.948 0.147 0.025 0.958 

holdout 2 0.504 0.916 0.157 0.026 0.952 

holdout 3 0.518 0.918 0.151 0.025 0.954 

holdout 4 0.488 0.924 0.153 0.026 0.956 

holdout 5 0.511 0.915 0.154 0.026 0.954 

holdout 6 0.505 0.915 0.155 0.026 0.953 

holdout 7 0.486 0.918 0.144 0.024 0.959 

holdout 8 0.515 0.913 0.154 0.026 0.953 

holdout 9 0.488 0.924 0.155 0.026 0.954 

holdout 10 0.459 0.933 0.152 0.025 0.957 

holdout 11 0.491 0.924 0.157 0.026 0.952 

holdout 12 0.491 0.924 0.157 0.026 0.952 

Average 0.490 0.923 0.153 0.026 0.954 

  



165 

 

Appendix 5.3 Cross validation for equation 5.2. The average of the parameters from the twelve 

holdouts yields equation 5.2,
303.2048.0 dbhBGB  . The intercept (a), scaling exponent (b), standard 

error of estimates (se) and coefficient of determination (R
2
) are provided 

Holdout  a b SEE(a) SEE(b) R
2
 

holdout 1 0.050 2.291 0.198 0.059 0.959 

holdout 2 0.039 2.360 0.192 0.057 0.962 

holdout 3 0.048 2.299 0.203 0.060 0.958 

holdout 4 0.048 2.303 0.201 0.060 0.960 

holdout 5 0.050 2.290 0.202 0.060 0.958 

holdout 6 0.049 2.293 0.202 0.060 0.959 

holdout 7 0.048 2.301 0.204 0.061 0.958 

holdout 8 0.051 2.276 0.198 0.059 0.959 

holdout 9 0.042 2.332 0.192 0.057 0.964 

holdout 10 0.048 2.302 0.194 0.058 0.963 

holdout 11 0.049 2.294 0.203 0.061 0.958 

holdout 12 0.049 2.294 0.203 0.061 0.958 

Average 0.048 2.303 0.199 0.059 0.960 
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Appendix 5.4 Cross validation for equation 5.3. The average of the parameters from the twelve holdouts 

yields equation 5.3, 
283.2024.0 rcdBGB  . The intercept (a), scaling exponent (b), standard error of 

estimates (se) and coefficient of determination (R
2
) are provided. 

Holdout  a b SEE(a) SEE(b) R
2
 

holdout 1 0.026 2.260 0.354 0.095 0.924 

holdout 2 0.026 2.255 0.356 0.096 0.922 

holdout 3 0.026 2.258 0.366 0.098 0.916 

holdout 4 0.026 2.252 0.364 0.098 0.917 

holdout 5 0.026 2.263 0.362 0.098 0.917 

holdout 6 0.026 2.258 0.367 0.098 0.915 

holdout 7 0.025 2.268 0.369 0.099 0.915 

holdout 8 0.009 2.521 0.277 0.074 0.940 

holdout 9 0.025 2.265 0.360 0.097 0.921 

holdout 10 0.025 2.268 0.357 0.096 0.927 

holdout 11 0.026 2.260 0.342 0.092 0.929 

holdout 12 0.025 2.268 0.369 0.099 0.915 

Average 0.024 2.283 0.354 0.095 0.921 

 

  



 

 


