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ABSTRACT

Response Surface Methodology (RSM) for several explanatory variables and one

response variable in the presence of random-effects was considered. In past studies,

an assumption of non-randomness for explanatory variables was made. However,

emerging situations reveal that randomness of explanatory variables is an aspect

worth consideration (Kipchumba, 2008). In this thesis, a Random-effects Response

Surface Model (RRSM) which is applicable to such situations is developed. The

Bayesian approach is used to estimate the RRSM. A simulation study was undertaken

to test the practicability of the RRSM and later, real data on maize farming in

Eldoret East District of Kenya was used. WinBUGS and R Statistical Programming

Packages were used in analysis. The simulation results showed that RRSM clearly

reveals the randomness of explanatory variables when modeling a farm production

process in the presence of random effects. When real data was used, RRSM similarly

revealed the randomness in the real data.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Response Surface Methodology (RSM) is an important subject in the statistical de-

sign of experiments. It is widely used in many fields such as Industrial, Biological,

Clinical, Social, Food, Engineering, Agricultural sciences, amongst others. It is a

tool in statistical analysis of experiments in cases where the yield is believed to be

influenced by one or more controllable factors. The method explores relationships

between several explanatory variables and one or more response variable(s). The

main idea underlying RSM is to use a sequence of designed experiments to obtain

an optimal response.

RSM was introduced by Box and Wilson (1951). They were motivated by the need

to run experiments efficiently through a proper choice of design, and to determine

operating conditions on a set of controllable variables that give rise to an optimal

response.

The most extensive applications of RSM are in particular situations where several

input variables potentially influence some performance measure or the quality char-

acteristics of the process. RSM consists of the experimental strategy for exploring

the space of the process or independent variables, empirical statistical modeling to

develop an appropriate relationship between the yield and the process variables, and

optimization methods for finding the values of the process variables that produce

desirable responses.

1



As an illustration, consider a case whereby the growth of a plant is affected by cer-

tain amounts of water and sunshine. Denote these two treatments by X1 and X2

respectively. The plant can grow under any combination of these treatments which

vary continuously.

When treatments are from a continuous range of values, the true relationship between

the response and the explanatory variables may be difficult to know. However,

the RSM provides a good approximation of such relationships. In the foregoing

illustration, if we denote the plant growth by Y and consider it as the response

variable, then it is a function of X1 and X2 . This relationship can be expressed

mathematically as;

y = f (x1, x2) + e (1.1)

where e in equation (1.1) is the experimental error which represents any measure-

ment error on the response as well as other types of variations not explained by the

variation in the explanatory variables. This implies that there are cases in which

variation in the response variable Y is not fully explained by the total variation in

the explanatory variables.

Since RSM finds its base in statistical models, which are usually approximations to

reality, both the RSM and its parameters are subject to uncertainty. This means

that an estimated point that is taken as optimum may not necessarily be optimal in

reality due to estimation errors.

The explanatory variables may usually include main effects only or sometimes main

2



effects plus their interactions if they exist. Quadratic and possibly cubic terms may

also exist in the main effects to account for any curvature. The implication of this is

that the response variable may be a function of the main effects only or main effects

and their interactions.

When dealing with continuous treatments, the first goal for RSM is usually to find

the optimum response. In a case of more than one response, we find the compromise

optimum. If there are some prevailing constraints on the design data, the experi-

mental design has to satisfy those constraints. The second goal is to understand how

the response changes in a given direction by adjusting the design variables.

In most RSM problems, the true response function f (.) is unknown and has to be

approximated. In the approximation of f (.) , it is best to start with a low-order

polynomial in some small region and proceed to a subsequent higher order polyno-

mials if the problem has not been solved. This is usually the case when there is a

curvature in the response surface. In general, all RSM problems use either one or a

mixture of these models. In any model, the levels of each factor are independent of

the levels of other factors.

Further, in order to get the most efficient results in the approximation of polyno-

mials, proper experimental designs must be used to collect data. Once the data

are collected, an appropriate technique of estimation must be used to estimate the

parameters in the polynomial. Otherwise, fitting of the RSM can be tedious.

RSM has an effective track-record of helping researchers improve products and ser-

3



vices. For example, Box and Wilson (1951) original RSM enabled chemical engineers

to improve a process that had been stuck at a saddle point. Their design reduced

the cost of experimentation and enabled a quadratic model to be fitted.

There are several applications of RSM in real life situations. In this thesis, we present

an application of the RSM to model a farm production process in the presence of

random effects. In particular, we consider maize farming in Eldoret East District,

Kenya. The motivation behind this consideration is that maize is considered a staple

food by many people yet there has been a general decline in production in the recent

past. As a result, food insecurity has become a major concern to majority of people

and the government. Indeed, one of the key aspects in the Kenya 2030 vision is food

security.

1.2 Statement of the Problem

Response Surface Methodology (RSM) has been widely used in optimizing processes

of designed experiments. The main objective of RSM is to summarize relationships

between several explanatory variables and one or more response variable(s) through a

mathematical model and thereafter, optimize the response variable. In the resulting

models, some assumptions are usually made. A main assumption is that of non-

randomness of the variables. However, emerging situations reveal that randomness

is an aspect that should not be ignored (Kipchumba, 2008). Therefore, formulating

a Random-effects Response Surface Model (RRSM) is inevitable.
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1.3 Objectives of the Study

1.3.1 General Objective

To apply RSM to farm production processes in the presence of random effects.

1.3.2 Specific Objectives

1. To propose a model which incorporates randomness of independent variables,

using RSM.

2. To estimate the proposed model using Bayesian approach.

3. To simulate the proposed model.

4. To apply the proposed model in solving a current problem of Maize production

in Eldoret East District of Kenya.

1.4 Significance of the Study

There are many emerging real life situations, particularly in the area of production

in agriculture, that require application of RSM in finding optimality of the yield. In

most of these situations, the explanatory variables are practically random in nature.

Therefore, in order to improve optimization of the processes, it is important to take

into consideration the randomness, whenever it exists, of the explanatory variables.

In the application of this research, we use RSM considering the random nature of in-

puts in a maize farming process. In doing so, we develop a procedure for maximizing
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output per unit of land, while minimizing the costs involved. An optimal amount of

each input to be used, within specified limits, is determined.

Maize is a staple food crop in Eldoret East District. This district is a major maize

producing zone of Kenya. There is however a gap between production and con-

sumption of this commodity. Implementation of this study is therefore in line with

Vision 2030 of the Kenyan government, in which agriculture is listed as one of the

key sectors of her economy that requires improvement.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows; Chapter two presents a review of

literature relating to the objectives. In chapter three, we discuss our methodology

in which we first review RSM and thereafter, we propose a random-effects response

surface model and discuss its estimation. In chapter four, we perform simulations of

the proposed model and discuss the results. Chapter five has an empirical study in

which we have data collection including choice of a sampling technique, data collec-

tion tools, and strategy of determining the sample size. The statistical analysis of the

primary data collected and comprehensive discussion of the results is also undertaken

in the same chapter. Finally, chapter six has the conclusion and recommendations

for further research.

6



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, a review of literature related to our objectives is presented. First a

review on advances related to each objective is provided, followed by some selected

information on maize farming.

2.2 Response Surface Methodology (RSM)

RSM is a collection of mathematical and statistical techniques useful for modeling

and analysis of problems in which a response of interest is influenced by several ex-

planatory or design variables. It can also be defined as a collection of statistical and

mathematical techniques useful for developing, improving, and optimizing processes.

See Montgomery (2005) and Arap Koskei (2010).

The methodology was formally introduced and described by Box and Wilson (1951)

who suggested the use of a first-degree polynomial to approximate a response vari-

able, Hill and Hunter (1966), Arap Koskei (2010). They acknowledged that this

methodology is an approximation procedure which is easy to use even when little is

known about the process. However, available literature shows that some work had

been done related to RSM prior to Box and Wilson (1951). For instance, see Mead

and Pike (1975) in which several pre-Box era deliberations dating back to 1930s are

provided.
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During the pre-Box era, some important contributions were made to three main

fields of applications. Foremost, response curves were extensively used as growth

curves for studies on animals and plants. Empirical approaches to choosing a model

were illustrated, Wishart (1938)and Wishart (1939). In this illustration, orthogonal

polynomials are used for studying growth rates in nutrition studies of pigs. The func-

tional model approach is also illustrated using the Gombertz curve, Winsor (1932).

The logistic curve for growth studies is also proposed by, Reed and Berkson (1929).

Secondly, response curves were used in Probit Analysis. These led to modern probit

analysis, Gaddum (1933), Bliss (935a). The third area where response curves were

used and in which, for the first time, response surfaces were considered, was the

agronomic study of the response of crop yield to fertilizer levels and crop spacing.

In this study, an asymptotic relationship between plant yield and the supply of an

essential growth factor was found to be biologically reasonable, Mitscherlich (1930).

Later, Crowther and Yates (1941)improved the work of Mitscherlich (1930)using the

proposed response equations to illustrate the response of arable crops to several dif-

ferent fertilizers.

Important developments of Optimal Design Theory in the field of experimental de-

signs emerged following World War II, Myers et al. (1989), Chernoff (1953), Kiefer

(1959), Kiefer and Wolfowitz (1952),Kiefer and Wolfowitz (1959),andKiefer and Wol-

fowitz (1960).

Box and Draper (1963) and later Peterson (1990) considered the second order re-
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sponse surfaces. Arap Koskei (1984)worked out fourth order rotatable designs. Njui

(1985)extended this work to fifth order rotatable designs. Kosgei (2006) explored

some important aspects of response surface designs with emphasis on those having

the property of rotatability. This is a desirable quality of an experimental design.

In all the above studies, an important concern is whether the system contains a max-

imum or a minimum or a saddle point points which are of great interest to industry.

RSM is therefore becoming increasingly useful. In recent years, more emphasis has

been placed on RSM by the chemical and processing fields. Consequently, application

and development of RSM continues to find use in many areas of research.

2.3 Bayesian Model Estimation

Bayesian estimation is based on Bayes’ theorem. The theorem, also known as Bayes’

law or Bayes’ rule, is named in honour of Reverend Thomas Bayes (1701-1761), who

first suggested using it to update prior beliefs in light of emerging evidence. However,

his work did not gain popularity until the ideas were independently rediscovered and

further developed by Laplace (1812), who first published the modern formulation.

Until late 20th century, the Bayesian approach was not accepted by Mathemati-

cians who generally held frequentist views claiming that Bayesian is an unscientific

method. Interestingly, it is currently widely accepted due to many examples of suc-

cessful applications. As a result, many developments regarding Bayesian estimation

have taken place. Monte Carlo Markov Chain (MCMC) sampling algorithms; the

Metropolis, Metropolis-Hastings and the Gibbs sampler, have been developed, in
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that order. These algorithms are good especially for complex posterior distributions.

Gilks et al (1993) show how to use Gibbs sampling to estimate a model. They

illustrate the methodology with an analysis of long-term response to hepaptitis B

vaccination, and demonstrate that the methodology can be easily and effectively

extended to deal with censoring in the dependent variable.

2.4 Simulation Studies on RSM

Simulation is imitation of some real thing, or state of affairs, or a process. It entails

representing certain key characteristics or behaviors of a selected physical or abstract

system. Many simulation studies have been undertaken in RSM and decision makers

are increasingly using simulations in their analysis where the aim is to determine the

optimum combination of factors and/or to investigate relationship between response

variable and explanatory variables, Hossein and Thornton (1984).

Baysal (2008) considered a situation in which one may wish to evaluate the distri-

bution of profit and loss resulting from a dynamic trading strategy. In this case,

a straight forward method is to simulate thousands of paths (i.e. time series) of

relevant financial variables and track the profit and loss at every time at which the

trading strategy rebalances its portfolio. In many cases, this requires numerical com-

putation of portfolio weights at every rebalancing time on every path resulting in

millions of simulations to compute portfolio weights, which is expensive. They show

that RSM enables an efficient simulation procedure with reduced number of simu-

lations, by modelling portfolio weights as a function of underlying financial variables.
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There seems to be no established code of practice for the automated application of

RSM in the field of simulation optimization, Nicolai and Dekker (2009). They aim

to find the best settings for an automated RSM procedure especially when there is

little information about the objective function. They present a framework of the

RSM procedure for finding optimal solutions in the presence of noise, and compare

various versions of the RSM algorithms on a number of test functions which include

a simulation for cancer screening.

However, despite many efforts to encourage the application of RSM to simulation,

this is yet to receive much attention and respect from practitioners and academicians,

Hossein and Thornton (1984). They attempt to stimulate greater awareness on RSM

and its associated experimental designs, as they relate to simulations.

2.5 Maize Farming and Causes of General Decline

in Production

Since maize is a staple food crop for many people, extensive research has been done

towards establishing the factors that affect its production, how to optimize the effect

of such factors and hence optimize its yield. These efforts have been motivated by

the need to find a lasting solution to food insecurity.

Kipchumba (2008) observed that an increasing number of food crop farmers in Uasin

Gishu District of Kenya are abandoning maize farming in favour of small scale busi-

nesses and horticulture. He views this as a move that is likely to threaten food

security because the district is one of those regions that constitute the bread basket
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of the country Kenya. He further established that the shift is due to relatively low

returns mainly because of high cost of inputs and delays in payment from marketing

bodies like the National Cereals and Produce Board (NCPB).

Uasin Gishu District is a major food-producing district of Kenya but over the recent

years there has been a general decline of crop yields in the district, Cleopas et al.

(2007). In their research, they observed that one of the factors affecting agricultural

output is the level of mechanization. They found that there was stagnation in the

level of agricultural mechanization in the district, which has contributed to the de-

cline in crop yields.

Over the years, it has been established that mechanization is a main factor that con-

tributes to increase in agricultural production. For example, in the United States,

in 1950 one farm-worker produced enough food to support three other people while

in 1970, one farm-worker supported 11 people, Wennblom, (1974). Additionally,

improvements in crop varieties and use of chemicals/fertilizers and pesticides also

contributed to increased production, Cleopas et al. (2007).

Any machinery will require repair at some stage of its life. Since manufacturers are

usually far from farms, the farmers take the machines to the nearest workshop for

repair. Most of these workshops are poorly-equipped and hence poor workmanship,

Cleopas et al. (2007).

Increased agricultural output has also been attributed to timely weeding which can

be achieved by use of agrochemicals using accurately calibrated machinery. Timely
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planting and application of fertilizers also contribute to increased production, Rider

and Dickey (1982), Ksiazek (1985). Timely harvesting reduces crop losses as well.

Moreover, if the whole crop can be harvested, losses can be reduced. Machinery

known as combines, which harvest the whole crop, thresh and clean the grain, have

been developed, Metianu et al. (1983). However, most farmers in Uasin Gishu Dis-

trict lack such machines, and this contributes to the reduced agricultural output.

Others avoid using the machinery and instead opt to use human labour in a bid to

reduce the cost of production, Kipchumba (2008), DAO (2001).

Soil acidity is one of the factors limiting maize production in some parts of Kenya

notably in Uasin Gishu Plateau, Mwangi, et al. In their research, they found that

several techniques of correcting the problem such as liming, use of organic farmyard

manure alone or in combination with inorganic fertilizers and use of non-acidifying

fertilizers have been suggested. Several formulations of fertilizers that can be used

as alternatives to Diamonium Phosphate (DAP) fertilizer which is said to aggravate

the acidity problem have been produced. Results of their research indicated that soil

acidity can be improved with the application of agricultural lime in some seasons.

It also indicated that farmyard manure also improves soil PH but the change is not

as instant as is for lime. However, soil acidity improvement through manure is more

sustainable with time than use of lime.

13



CHAPTER THREE

METHODOLOGY

3.1 Introduction

Response Surface Methodology (RSM) consists of experimental strategies for ex-

ploring the space of independent variables, empirical statistical modelling used in

developing an appropriate relationship between the yield and the process variables,

and optimization algorithms for finding the values of independent variables that

produce desirable values of the response. In this set of techniques, the performance

measure or quality characteristic is called the response or the dependent variable

while the input variables are known as the independent or explanatory or predictor

variables.

We focus our study on statistical modelling to develop an approximating model

between the response and the independent variables. In general, the relationship is;

Y = f (ξ1, ξ2, ..., ξk) + ε (3.1)

where Y in equation (3.1) is the response, ξ1, ξ2, ..., ξk are the independent variables

and ε is a term that represents other sources of variability not accounted for in the

function f . This may include effects such as measurement errors on the response,

background noises and even effects of other variables. It is treated as a statistical

error that is normally distributed with mean 0 and variance σ2 i.e. N (0, σ2) .

Consequently;
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E [Y |ξ1, ξ2, ..., ξk ] = E [f (ξ1, ξ2, ..., ξk)] + E [ε|ξ1, ξ2, ..., ξk] = E [f (ξ1, ξ2, ..., ξk)]

(3.2)

The variables ξ1, ξ2, ..., ξk in equation(3.2) are called natural variables because they

are expressed in the natural units in which the measurements being studied were

made. In RSM, it is convenient to transform these natural variables into coded vari-

ables, say X1, X2, ..., Xk , which are dimensionless with mean zero and same standard

deviation. Accordingly, in terms of the coded variables, the response function can

be written as;

Y = f (x1, x2, ..., xk) + ε (3.3)

Where ε in equation (3.3)are random variables called error terms which are assumed

to be identically and independently distributed, independent of X and normally

distributed with zero mathematical expectation i.e. E (ε) = 0 , and constant and

finite variance i.e.V ar (ε) = σ2 < ∞ . The explanatory variables X are assumed to

be non-random.

Since the true response function f is unknown, it is approximated. In its approxi-

mation, the efficiency of the estimation procedure depends on the ability to develop

a suitable approximation for this function. This tenability of an efficient approxima-

tion is usually the focus of RSM.
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3.2 Types of RSM

There are basically three types of RSMs; the first-order, the second-order and the

fractional factorial-order.

3.2.1 First-Order RSM

Let the response be defined by a linear function of independent variables. Then, the

approximating response function is known as a first-order RSM. This is appropriate

when one is interested in estimating the true response from a small region of an

independent variable space where there is little curvature in the response function f

.

A first-order RSM with two explanatory variables in terms of the coded variables

can be expressed as;

Y = β0 + β1X1 + β2X2 + ε (3.4)

where β0 is the intercept, and β1 and β2 are the regression coefficients for the inde-

pendent variables X1 and X2 , respectively. The form of the first-order model in is

also referred to as the main effects model, because it includes only the main effects of

the two independent variables X1 and X2 . If there is an interaction between these

variables, the model takes the form;

Y = β0 + β1X1 + β2X2 + β12X1X2 + ε (3.5)

The interaction term introduces curvature into the response function.
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A first-order RSM with N experimental runs carried out on q input variables and a

single response Y therefore resulting in N observations can be expressed as;

Since in this case, the response variable Y is a function of the design variables

X1, X2, X3, ..., Xq and the experimental error ε , this model is a Multiple Regression

Model with βj′s being the regression coefficients.

In equations (3.4), (3.5) and (??) , the error terms ε are assumed to be identically

and independently distributed, independent of X and normally distributed with

zero mathematical expectation i.e. E (ε) = 0 , and constant and finite variance i.e.

V ar (ε) = σ2 <∞ . The explanatory variables X are assumed to be non-random.

First-order RSMs are used to describe flat surfaces which may or may not be tilted.

A shortcoming of these models is that they are not suitable for analyzing maximum,

minimum and ridge lines. Approximation of the response function in them is also

only reasonable when the response function itself is neither too curved nor too big.

First-order models are assumed to be adequate approximations of the true surfaces

in a small region of the design variables X ′s , Montgomery (2005).

In view of the fact that it is important to design an efficient model, estimation of

variances is considered. The orthogonal first-order RSM minimizes the variance of

the regression coefficients βj . A first-order RSM is orthogonal if the off-diagonal

elements of the information matrix are all zero.

3.2.2 Second-Order RSM

If the curvature in the true response surface is too strong, the first-order RSM will

be inadequate. A second-order RSM is then considered.
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For the case of two input variables X1 and X2 , the second-order RSM is;

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε (3.6)

Accordingly, a second-order response surface with q−input variables and which in-

volves all the possible terms i.e. main effects, interaction of the main effects and

quadratic term, is represented by the polynomial equation,

Y = β0 +

q∑
i=1

βiXi +

q∑
i=1

βiX
2
i +

q∑
i=1

q∑
i′=1

βii′XiX
′
i + ε ; i 6= i′ (3.7)

In the polynomial equation , the variable Y represents the dependent or response

variable whereasX ′is represent the explanatory or the independent variables and ε

represents the error term. β0, βi and βii′ are unknown constants also known as coeffi-

cients of the factors or regressors. They represent proportions at which the respective

terms contribute to the response variable and are tested to show the significance of

the respective terms in estimating the response variable. Since they are unknown,

they are estimated using an appropriate statistical estimation technique.

For Nobservations, the second order response surface model for q−input variables

takes the form;

Yj = β0 +

q∑
i=1

βiXi +

q∑
i=1

βiX
2
i +

q∑
i=1

q∑
i′=1

βii′XiX
′
i + ε ; i 6= i′ (3.8)

where j = 1, 2, ..., N . In matrix notation, this equation can be expressed as;
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Yj (x) = X ′β + εj (3.9)

Equation (3.9) is known as a quadratic RSM. The quadratic RSMs are always suffi-

cient for industrial applications almost surely.

In equation (3.9), the error terms εj are assumed to be identically and independently

distributed, independent of X and normally distributed with zero mathematical ex-

pectation i.e. E (ε) = 0 , and constant and finite variance σ2 i.e. V ar (ε) = σ2 <∞ .

The explanatory variables X are assumed to be non-random. Further, it is assumed

that there exists interaction effect between two inputs and outputs are independent.

In some special circumstances, a model involving only main effects and interactions

may be appropriate to describe a response surface when analysis of results reveals

no evidence of pure quadratic curvature in the response variable. In other circum-

stances, a complete description of the process might require at least a quadratic

model. However, it is rare that all of the terms are needed in an application.

The second-order RSM is widely used for several reasons; it is flexible in the sense that

it can take on a wide range of functional forms, it is easy to estimate its parameters,

and there is considerable practical experience indicating that it works well in solving

real response surface problems.
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3.2.3 Fractional Factorial RSM

A fractional factorial RSM is a factorial design with no run to completion of the full

factorial design. Factorial designs are usually denoted by pq where p refers to the

number of levels for which the variates are observed with q being the number of fac-

tors being considered. For instance, the 3q factorial RSM is a factorial arrangement

with q factors, each at three levels.

The levels of a chosen factor are usually referred to as low, intermediate and high,

represented by digits 0, 1 and 2 respectively. In a 33 factorial design, 0, 2, 1 indicates

the treatment combination corresponding to, say, factor A at the low level, factorB

at the high level and factorC at the intermediate level. When the measurements on

the response variable contain all possible combinations of the levels of the factors,

this type of experimental design is called a complete factorial design.

In general, a factorial design require many runs, therefore it is unlikely that the runs

can be carried out under homogenous conditions. As a result, the confounding in

blocks is unavoidable. A complete factorial experiment can be placed in a block of

units, where units in the same block are homogenous. This type of design technique

is called Confounding.

The complete blocks include every treatment in every block. On the contrary, the

incomplete blocks do not include all the treatments or treatment combinations in

each block. The incomplete blocks are less efficient than complete blocks due to the

loss of some information, usually the high order interactions. However, confounded
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factorials will tolerate main effects and low-order interactions.

The 3q design, for instance, can be confounded in 3s blocks, each with 3(q−s) units,

where q > s . If say, q = 3 and s = 2 , then,33 factorial design is confounded in

33 = 9 incomplete blocks, each with 33−2 = 31 units. We then define a contrast by

choosing a factorial effect to confound with blocks. The general defining contrast is

given by;

Yj = β0 +

q∑
i=1

βiXi +

q∑
i=1

βiX
2
i +

q∑
i=1

q∑
i′=1

βii′XiX
′
i + ε ; i 6= i′ (3.10)

where αi represents the exponents on the ith factor in the effect to be confounded and

Xi is the level of the ith factor in a particular treatment combination (Montgomery,

2005). Therefore,Xi takes the values of 0 (low level), 1 (intermediate level), or 2

(high level), where αi is 0, 1, or 2.

One important concern about 3q design is that it can require a large number of runs

even for moderate values of q . For example, a 39 design with a single replicate will

have 19,683 observations. If the design is confounded in 39−6 = 27 incomplete blocks,

then each block will require 27 observations. In this case, the fractional factorial de-

sign might be an alternative approach when dealing with a large number of factors.

Remark 1. In each of the types of RSM described above, aspects of multiple regres-

sion feature.
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3.3 Multiple Regression Model

The relationship between a set of independent variables and the response variable

Y is determined by a mathematical model called regression model. When there

are more than two independent variables, the regression model is called multiple-

regression model. In general, a first-order multiple linear regression model with q

independent variables and N experimental runs or observations takes the form;

yj = β0 + β1x1 + β2x2 + ...+ βqxq + εj; j = 1, 2, ..., N (3.11)

= β0 +

q∑
i=1

βiXi + εi; i = 1, 2, ..., q; i = 1, 2, ..., q (3.12)

While a second-order multiple-regression model with q input variables and N exper-

imental runs that result in N corresponding observations takes the form;

Yj = β0+

q∑
i=1

βiXi+

q∑
i=1

βiX
2
i +

q∑
i=1

q∑
i′=1

βii′XiX
′
i+ε ; i 6= i′; i = 1, 2, ..., q; j = 1, 2, ..., N

(3.13)

The parameter βi measures the expected change in response Y per unit increase in

Xi when the other independent variables are held constant.

A multiple-regression model can be written in matrix form as;
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Yj (x) = X ′β + εj (3.14)

where

Y =



y1

y2

.

.

.

yn


nx1

X =



x11 x12 ... x1q

x21 x22 ... x2q

. . .

. . .

. . .

xn1xn2 ... xnn


nx1

β =



β0

β1

.

.

.

βq


kx1

ε =



ε1

ε2

.

.

.

εn


nx1

Y is an (nx1) vector of observations, X is an (nxk) matrix of levels of independent

variables, β is a (kx1) vector of regression coefficients, and ε is an (nx1) vector of

random errors. If X is a (kxk) non-singular matrix, then the linear system Yj (x) =

X ′β + εj has a unique least squares solution given by
_

β = (X ′X)−1X ′Y . The data

structure for the multiple-regression model can be displayed as shown in table 3.1

below

3.4 The Random-effects Response Surface Model

(RRSM)

3.4.1 Introduction

In this section, we propose a Random-effects Response Surface Model (RRSM), in

which we consider random effects that may come with the independent variables.
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This means that the proposed model tackles both fixed and random effects. Accord-

ingly, the proposed RRSM takes the form of a mixed effects model. Traditionally,

mixed effects models are used in analysis of multilevel data structures. Our contri-

bution is that the proposed model not only acts on multilevel data structures, but

also on response surfaces. Notably, estimation of variance in traditional mixed effects

models is done considering the multilevel structure in the population. In doing this,

one computes the variation at the different levels of the exhibited hierarchy. In our

case however, the variation is based on the response surface only.

3.4.2 Notations Used

Let Y denote the response variable of interest. We suppose that the population of

our study is partitioned into strata with the assumption that each stratum has same

inherent characteristics. Therefore, we let Yijt to represent the response from respon-

dent i selected from stratum j at time t in years where i = 1, 2, ..., nj , j = 1, 2, ...,m

, t = 1, 2, ..., T . Let Y ∗i,j,t−1 = (Yi,j,t−1, Yi,j,t−2, ..., Yi,j,1) represent past responses from

respondent i in stratum j for time t = t− 1, t− 2, ..., 1 .

We suppose that there are p quantitative input factors denoted by

X1,i,j = (X1,1,i,j, X1,2,i,j, ..., X1,p,i,j) and q qualitative input factors denoted byX2,i,j =

(X2,p+1,i,j, X2,p+2,i,j, ..., X2,p+q,i,j) , that significantly contribute to the response vari-

able so that Xi,j = (X1,i,j, X2,i,j) constitute a set of explanatory variables; both

quantitative and qualitative. In matrix form, this can be written as;
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Xi,j = (X1,i,j, X2,i,j)
T =



X1,1,1,1 X1,2,1,2 ... X1,p,1,m X2,p+1,1,1, ..., X2,p+q,1,m

X1,1,2,1, X1,2,2,2, ..., X1,p,2,m, X2,p+1,2,1, ..., X2,p+q,2,m

.

.

.

X1,1,n1,1, X1,2,n2,2, ..., X1,p,nm,m, X2,p+1,n1,1, ..., X2,p+q,nm,m



For example,X1,1,1,1 denotes the first quantitative factor applied by the first respon-

dent in the first stratum, X1,1,2,1 denotes the first quantitative factor applied by the

second respondent in the first stratum, X1,1,n1,1 denotes the first quantitative factor

applied by the nth1 respondent in the first stratum, where n1 is the total number of

respondents interviewed in the first stratum (i.e. the sample size of stratum 1). Fur-

ther, X2,p+1,1,1 denotes the first qualitative factor applied by the first respondent in

the first stratum, X2,p+1,2,1 denotes the first qualitative factor applied by the second

respondent in the first stratum, and so on.

Further, let Zijt and Wijt represent population-specific and stratum-specific design

vectors, respectively, whereby Wijt is a sub vector of Zijt . The design vector Zijt

and therefore Wijt may depend on deterministic or stochastic covariates and on past

responses, such that;

Zijt = Z
(
Xijt, Y

∗
ijt−1

)
(3.15)
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3.4.3 The Model

We develop our model in two phases as follows;

Phase 1: Fixed-effects Component

This model specifies effects that are constant across the whole population under

study. Such effects may also be referred to as population-specific effects and the cor-

responding model is sometimes called population-averaged model. For each selected

respondent i , we have;

Yijt = τ + βZijt + eijt (3.16)

where β denotes a vector of unknown regression coefficients for the fixed-effect ex-

planatory variables. Here, the intercept and the slope are considered to be fixed.

The error terms eijt are assumed to be identically and independently distributed,

independent of Zijt and normally distributed with zero mathematical expectation

i.e. E (eijt) = 0 , and constant and finite variance i.e. V ar (eijt) = σ2 < ∞ . The

explanatory variables are assumed to be non-random.

Phase 2: Random-effects Component

In this phase, we foremost assume that the normal responses depend linearly on

unknown population-specific effects β and on unknown stratum-specific intercepts

τij such that we have the model;

Yijt = τij + βZijt + eijt (3.17)
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where eijt are the error terms assumed to be uncorrelated normal random variables

such that eijt N (0, σ2) . Yijt represents the response (yield) realized by respondent i

in stratum j at time t; t = 1, 2, ..., Tij ; . Zijt =
(
Xijt, Y

∗
ijt−1

)
are population-specific

explanatory variables which depend on deterministic or stochastic covariatesXijt and

past responses Y ∗t−1 . The stratum-specific intercepts τij are also assumed to vary

amongst respondents within same stratum.

Next, we assume that the normal responses depend linearly on unknown stratum-

specific intercepts τij , population-specific effects β , stratum-specific effects αijt and

the error term eijt such that we have the model;

Yijt = τijt + βZijt + αijtWijt + eijt (3.18)

Here, the effects αijt are assumed to vary independently from one stratum to another

according to a mixing distribution with zero mean. Since the errors are assumed to be

Gaussian, a normal mixing density with unknown covariance matrix cov (αijt) = Q

is chosen such that;

αijt (0, Q) , Q > 0 (3.19)

and the sequences {εijt} and {αijt} are assumed to be independent.

Model (3.18) is now our proposed Random-effects Response Surface Model (RRSM).
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3.4.4 Assumptions

In the proposed model (3.18), the following assumptions are made;

3.4.4.1 Assumptions on the Error Term

A1 : eijt are independent and identically distributed (iid) random variables.

A2: eijt , eijt 6= eijt′ are independent of the quantitative factors and the qualitative

factors

A3: The covariance between error terms in any two different observations

equals to zero i.e. cov (eijt, eijt′) = 0, eijt 6= eijt′ ,

A4: eijt are normally distributed with mean 0 and variance σ2 .

A5: There is no curvature in the explanatory variables. This therefore implies that

our RSM model is a multiple linear regression model with experimental variables

comprising of the main effects and their interactions where they exist.

3.4.4.2 Assumptions on the Population under Study

A1: The population is organized into non-overlapping strata of varying sizes nj; j =

1, 2, ...,m

A2: Each stratum has homogenous inherent characteristics and the units in

one stratum are independent of those in all the other strata.
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3.4.5 Remarks on the Model

1. Using assumption we can rewrite our model as a multivariate heteroscedastic

linear regression model;

Yijt = τijt + βZijt + e∗ijt (3.20)

where the multivariate errors e∗ijt = αijtwijt + eijt and;

e∗ijt iid N (0, Vijt) ;Vijt = Iσ2
e +WijtQW

′
ijt (3.21)

2. The model (3.19) is a general version of our proposed model. From it, special

cases may be derived and used in analyzing varying intercepts and varying

slopes, or stratum-specific effects. Below are examples of some of these cases.

Random Intercepts Model

In some empirical studies, stratum-specific intercepts that may significantly

influence the response variable, in addition to the observed covariates, may

exist. Stratum-specific effects do not cut across the entire population under

study but are only specific to a portion of a population. To account for such

effects, a Random-effects Model with stratum-specific intercept is appropriate.

Such a model can be written as;

Yijt = τijt + βZijt + eijt (3.22)
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where the slope coefficients β are taken to be constant and the intercepts τijt

are random and assumed to be iid with unknown parameters E (τijt) = τ and

V ar (τijt) = σ2 . The unobservable deviations between the population mean τ

and the stratum-specific realizations τijt may be interpreted as effects of omit-

ted covariates.

Random Slopes Model

The Random-intercept Model (3.22) do not alleviate the restrictive assumption

that the slope coefficients are equal for each observation. In most longitudi-

nal studies, varying slope coefficients usually arise, where intercept and slope

coefficients are specific to each stratum. Therefore, to take into account such

parameter heterogeneity, the Random- intercept model (3.22) can be extended

so that we treat, not only the intercept as random, but also the slope coeffi-

cients. Doing this, the corresponding model will have the form;

Yijt = τijt + βijtZijt + eijt (3.23)

Sometimes, however, the assumption that some coefficients are stratum-specific

may be less realistic than the assumption that some coefficients are constant

across strata (Ludwig and Gerhard, 1994). For instance, suppose βi1 de-

notes the stratum-specific coefficients and βi2 denotes the remaining coeffi-

cients which are constant across strata, then, the parameter vector βi may
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be partitioned into βi = (βi1, βi2) with βi2 = β2 for all i . The design

vector Zijt = (1, Zijt) also has to be rearranged according to the structure

Zijt = (Zijt1, Zijt2). Then the probability model for βi is a multivariate normal

density with singular covariance matrix expressed as;

βi =

 βi1

βi2



 βi1

βi2

 ,
 Q 0

0 Q


 (3.24)

where the sub matrix Q is assumed to be positive definite. Due to the mixing

of ‘fixed effects’ and ‘random effects’, models of this type are called Random-

effects models.

3.4.6 Model Estimation

Estimation of our proposed RRSM (3.18) implies estimation of the parameters

τ, β, α and σ2
e of the model. Their estimation is often based on a frequentist or

classical approach, where τ, β, α and σ2
e are treated as ‘fixed’ parameters. How-

ever, we can also use Bayesian estimation, which is fundamentally different from the

classical approach in the sense that the parameters to be estimated are treated as

‘random’ variables with suitable prior probability distribution. For this reason, we

estimate our model using the Bayesian approach.

3.4.6.1 Review of the Bayesian Estimation

Let Y1, Y2, ..., Yn be a random sample taken from a population indexed by the param-

eter, say θ, and the prior distribution is updated or modified using the information

from the sample. The resulting distribution (modified prior) is called the posterior
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distribution, and is assumed to contain all the relevant information about θ. The

posterior Bayes estimator of θ is the mean of the posterior distribution.

Suppose f (θ) is the prior distribution of θ . Then, f (θ) expresses what is known

about θ prior to observing Y = Y1, Y2, ..., Yn. The first step in Bayesian estimation

procedure is usually to decide on this prior. The second step involves deciding on

the likelihood. Let f (θ) be the likelihood function of Y given θ. The likelihood

describes the process giving rise to the data in terms of unknown θ. Accordingly,

f (y|θ) = f (y, θ)

f (θ)
(3.25)

Let f (θ|y) be the posterior distribution. This expresses what is known about θ after

observing Y . Thus,

f (θ|y) = f (θ, y)

f (y)
(3.26)

Deriving the posterior by applying the Bayes theorem, is usually the third step in

Bayesian estimation. The fourth and the last step is deriving inference from the

posterior.

From equation (3.25), we have that f (y, θ) = f (y|θ) f (θ) . Substituting this in

equation (3.26), leads to;

f (θ|y) = f (y|θ) f (θ)
f (y)

(3.27)

But f (y) =
∫
f (y, θ) dθ . Therefore, equation (3.27) may be written as;
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f (θ|y) = f (y|θ) f (θ)∫
f (y, θ) dθ

=
f (y|θ) f (θ)∫
f (y|θ) f (θ) dθ

(3.28)

Equation (3.28) represents the posterior distribution when no sampled observations

are available. Suppose a random sample Y1, Y2, ..., Yn is taken from the random vari-

able Y , then, we have;

f (θ|y) = f (y|θ) f (θ)∫
f (y|θ) f (θ) dθ

(3.29)

Assuming Y1, Y2, ..., Yn are independent observations on Y , then, equation (3.29) can

be re-written as;

f (θ|y) =

n∏
i=1

f (yi|θ) f (θ)∫ n∏
i=1

f (y|θ) f (θ) dθ
(3.30)

Equation (3.30) now represents the posterior distribution when sampled observations

are available. The posterior Bayes estimator of θ is the mean of equation (3.30). That

is;

θ̂ = E (θ) =

∫
θf (θ|x) dθ (3.31)

As an alternative to equation (3.31), we may use MCMC sampling algorithms. This

class of algorithms is good especially for complex posterior distributions. It involves

sampling from the posterior distribution using an appropriate MCMC sampling al-
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gorithm.

3.4.6.2 Review of Monte Carlo Markov Chain (MCMC) Sampling Meth-

ods

MCMC sampling methods are a class of algorithms for sampling the posterior dis-

tribution based on constructing a Markov chain that has the desired density as its

limiting distribution. The idea behind MCMC sampling is to simulate a random

walk in the space of parameters of interest, θ = (θ1, θ2, ..., θd)
′ , which converges to

the joint posterior distribution p (θ|y) . The samples are drawn sequentially and the

distribution of the sampled draws depends on the last value drawn. The state of the

chain after a large number of iterations is then used as a sample from the desired

posterior distribution.

The Metropolis Algorithm

Given a target posterior distribution p (θ|y) , the metropolis algorithm creates a

sequence of random vectors
(
θ(1), θ(2), ...

)
whose distribution converges to the target

distribution . Each sequence can be considered as a random walk whose stationary

distribution is p (θ|y) . The algorithm proceeds as follows;

Start with some initial value θ0 . For t = 1, 2, ... , obtain θ(t) from θ(t−1) using the

following steps:

1. Sample a candidate point θ∗ from a proposal distribution at time t , q
(
θ∗|θ(t−1)

)
.The proposal distribution must be symmetric; that is q (θa|θb) = q (θb|θa) , for

all θa and θb .
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2. Calculate the ratio of the densities;

r =
p (θ∗|y)

p (θ(t−1)|y)
(3.32)

3. Set;

θ(t) =

 θ∗ with probability min (r, 1)

θ(t−1) otherwise
(3.33)

It is important to note that the algorithm requires the ability to draw θ∗ from

the proposal distribution q (θ∗|θ) for all θ .

The Metropolis-Hastings (M-H) Algorithm

The M-H algorithm generalizes the metropolis algorithm in two ways. First, the

proposal distribution q needs no longer to be symmetric. That is, there is no re-

quirement that q (θa|θb) = q (θb|θa) . Secondly, to correct for the asymmetry in the

proposal density, the acceptance ratio is now (Tierney, 1994; Chib and Greenberg,

1995; Gelman et al, 1995)

r =
p (θ∗|y) q

(
θ(t−1)|θ∗

)
p (θ(t−1)|y) q (θ∗|θ(t−1))

(3.34)

Gibbs Sampler

The Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990; Gilks, 1996)

is a MCMC algorithm that has been found to be very useful in multidimensional

problems. It is defined in terms of sub vectors of θ . At each iteration t, the

35



Gibbs sampler cycles through the sub vectors θ of θj , drawing from the conditional

distribution given all the remaining components of θ:

pj

(
θj|θ(t−1)−j , y

)
,

Where θ−j represents all the components of θ ,

except for θj , i.e. θ−j = (θ1, θ2, ..., θj−1, θj+1, ..., θd)
′ This suggests the following

MCMC scheme;

1. Generate θ(t)1 from p1

(
θ1|θ(t−1)2 , θ

(t−1)
3 , ..., θ

(t−1)
d , y

)
2. Generate θ(t)2 from p2

(
θ2|θ(t−1)1 , θ

(t−1)
3 , ..., θ

(t−1)
d , y

)
.

.

.

3. Generate θ(t)d from pd

(
θd|θ(t−1)1 , θ

(t−1)
3 , ..., θ

(t−1)
d−1 , y

)
At the completion of these steps, the vector θ(t) =

(
θ
(t)
1 , θ

(t)
2 , ..., θ

(t)
d

)′
provides the

simulated value of θ at the tth iteration of sampling. The d steps of this Gibbs

sampling scheme completes one iteration of the simulated method.

After a large number,T , of iterations, we obtain θ(T ) . Geman and Geman(1984)

show that under mild conditions, the joint distribution of θ(T ) converges at an ex-

ponential rate to p (θ|y) as T → ∞ . The desired joint posterior distribution,

p (θ|y) , can be approximated by the empirical distribution of Mvalues of θ(t) for

t = T + 1, T + 2, ..., T +M , where T is large enough so that the Gibbs sampler has

converged and M is chosen to give sufficient precision to the empirical distribution

of interest.
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3.4.6.3 The Random-effects Response Surface Model in Bayesian Frame-

work

In Bayesian framework and under assumptions A1 − A5 on the error term, and

assumptions A1 − A2 on the population under study, our proposed Random-effects

Response Surface Model (3.18) can be rewritten as;

[
Y |τ, α, β, σ2

e

] (
τ + βZ + αW, σ2

e

)
(3.35)

independently for each respondent i, where Z is a matrix of population-specific re-

gressors; β is a vector of population-specific (fixed effects) parameters linking Z to

Y ; W is a matrix of stratum-specific (random effects) regressors with corresponding

vector of parameters α linking W to Y ; and σ2
e is the error variance. In general, W

is a sub set of Z i.e. W ⊆ Z .

Further, we assume that for each factor K, the random effects vector α is indepen-

dently normally distributed with mean zero and variance σ2
α . That is;

α
(
0, σ2

α

)
(3.36)

We also assume that random effects are independent between factors.

3.4.6.4 Prior Distributions of Parameters

In line with Bayesian Philosophy, we must complete the Bayesian formulation of the

RRSM (3.18) by specifying the prior distributions of all parameters to be estimated.

Under assumptions (A1 − A5) , therefore, we specify conjugate prior distributions
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for τ, β, α and σ2 , respectively, as;

τ
(
0, σ2

τ

)
(3.37)

β
(
0, σ2

β

)
(3.38)

α
(
0, σ2

α

)
(3.39)

σ2
(
0, σ2

e

)
(3.40)

Where σ2
τ , σ

2
β, σ

2
α and σ2

e are the variances associated with τ, β, α and σ2 , respectively.

3.4.6.5 Posterior Distributions

To run Gibbs Sampler in estimating τ, β, α and σ2 in RRSM (3.35) , we require the

posterior distribution for each parameter (Gilks et al, 1993). The joint posterior

distribution of τ, β, α and σ2 is expressed as;

f (τ, β, α|z, w) =

n∏
i=1

f (zi, wi|τ, β, α)g (τ, β, α)∫ ∫ ∫ n∏
i=1

f (zi, wi|τ, β, α)g (τ, β, α) dτdβdα
(3.41)

But g (τ, β, α) = g (τ) g (β) g (α) assuming independency between τ, β and α. There-

fore, equation (3.41) becomes;
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f (τ, β, α|z, w) =

n∏
i=1

f (zi, wi|τ, β, α)g (τ) g (β) g (α)∫ ∫ ∫ n∏
i=1

f (zi, wi|τ, β, α)g (τ, β, α) dτdβdα
(3.42)

But the posterior distribution (3.42) depends on the random effects W . We need to

infer from the marginal posterior that does not depend on the random effects. Thus,

we integrate equation (3.42) with respect to W . That is;

f (τ, β, α|z) =

∫ n∏
i=1

f (zi, wi|β, α)g (τ) g (β) g (α) dwi∫ (∫ ∫ ∫ n∏
i=1

f (zi, wi|τ, β, α)g (τ, β, α) dτdβdα
)
dwi

(3.43)

One important trick that is usually used when deriving the posterior distribution in

Bayesian analysis is to ignore terms that are constant with respect to the unknown

parameters. Since the expression in the denominator of equation (3.43) results to a

constant, we can rewrite it as;

f (τ, β, α|z) α
∫ n∏

i=1

f (zi, wi|τ, β, α)g (τ) g (β) g (α) dwi (3.44)

It can be seen that the functions g (τ) , g (β) and g (α) in expression (3.44) do not

depend on Wand therefore this expression can be rewritten as;

f (τ, β, α|z) α
∫ n∏

i=1

f (zi, wi|τ, β, α)dwig (τ) g (β) g (α) (3.45)

3.4.6.6 Gibbs Sampling

We now run Gibbs sampler on the posterior distribution (3.45) together with the

conjugate prior distributions (3.37), (3.38),(3.39) and (3.40).
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3.5 Data Collection

This section presents the sampling technique, data collection tools and the strategy

of determining the sample size.

3.5.1 Sampling Technique

Eldoret East District consists of twenty administrative locations, namely; Moiben,

Sergoit, Ainabkoi, Tembelio, Meibeki, Mumetet, Karuna, Kaplolo, Koitoror, Kap-

soya, Kaptagat, Plateau, Kipsinende, Kipkabus, Kapngetuny, Olare, Chepngoror,

Chepkero, Chepkoilel, Kimoning’.

In view of this geographical description of the district, we apply stratified sampling

method. First, stratified sampling is convenient to use administratively. Often, one

of the typical variables used in stratification are administrative regions e.g. counties,

divisions, e.t.c. In this research, therefore, we use the existing administrative loca-

tions as strata. Secondly, the administrative locations are non-overlapping. It is a key

assumption in stratified sampling that the strata should be non-overlapping. Finally,

the population in an administrative location is assumed homogeneous in terms of soil

inherent characteristics, farming practices, inputs applied and the weather pattern.

This is another key aspect of stratified sampling whereby a stratum is considered

homogenous unlike in cluster sampling where the cluster is heterogeneous almost

like the whole population. This last point was also crucial in developing our model

in chapter four of this thesis whereby we considered stratum-specific characteristics
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and assumed that each stratum possessed similar characteristics that contribute to

the same intercept.

The population of maize farmers in each location is considered as a stratum which

makes a subpopulation of the whole population of maize farmers in the district.

Thus, we can denote the totals of sub populations as N1, N2, ..., N20 where Ni 6=

Nj; i, j = 1, 2, ..., 20 and their sum N1 +N2 + ... +N20 =
20∑
i=1

Ni =N where N is the

total population in the district.

The samples drawn from the strata are of sizes denoted by n1, n2, .., n20 , respectively

such that n1+n2+ ...+n20 = n where
20∑
i=1

ni =n, the size of the sample selected from

the whole district.

The sample selected using stratified sampling method can either be a simple random

sample or systematic sample. In this research, we decided to select a simple random

sample from each stratum (location). This is because in simple random sampling,

each maize farmer will have equal opportunity of being selected into the sample.

3.5.2 Sample Size

There are four commonly used strategies of determining a sample size. These include

using census for small populations, imitating a sample size of similar study, using

published tables and using formulas. In our study, we use a formula. Consequently,

there are many formulas which have been tested to work well. In our case, we use the

formula due to Yamane (1967). We adopted this formula because of its simplicity.
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Also, this formula has been used to calculate the sample sizes in some published

tables that have been reliably used for many years in determining sample sizes in

various studies.

The Yamane (1967) formula is given by;

n =
N

1 +N (e)2
(3.46)

where n is the sample size, e is the desired level of precision and N is the population

size in the whole district. We got the estimated value of N from the Kenya National

Bureau of Statistics (KNBS) census report of 2009.

3.5.3 Data Collection Tools

When collecting data, it is important to consider whether they are primary or sec-

ondary data. Our data is Primary data. Some of the main sources of data are

census where data is obtained from every member of a population, sample survey

where data is obtained from a subset of a population in order to estimate population

attributes, experiment and observational study. The source of our data was a sample

survey. This was done by trained enumerators through investigation whereby they

contacted individuals and filled in questionnaires (see appendix 1) after asking the

required information. The data collected this way is usually accurate and reliable.
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3.6 Conclusion

Chapter has provided our model and the estimation procedure using Gibss sampling

technique. It has also explained sampling procedure to be used in the data collection

in the emperical study. The subsequent chapter provides simulation study of the

proposed RRSM.
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CHAPTER FOUR

SIMULATION STUDY

4.1 Introduction

This chapter presents simulation of the proposed RRSM. First, we assume some

range of the response variable and fix some values for the regression coefficients of

the explanatory variables and the intercept. We then proceed to simulate from the

proposed RRSM under three different settings: Fixed effects only and then random

effects. Under the random effects setting, we have the random effects model whereby

the intercept alone is random (assuming explanatory variables are constant) and then

we have the random effects model in which both the intercept and the explanatory

variables are random.

4.2 Simulation Study Set Up

We suppose that there are 6 strata depicting the administrative locations. From each

stratum, we simulate ten (10) yields representing the harvest from ten farmers. We

assume the harvest is measured in 90Kg bags with the yield ranging between 10-40

bags of maize per acreage of land. Each of the 60 farmers in the assumed sample is

observed for a period of 8 years.

Let Y be the yield per acre of land measured in 90Kg bags. The acreage then be-

comes an offset variable. The vector of covariates Z consists of past responses and

quantity of fertilizer applied. Let r, s , and t index the administrative location (stra-
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tum), the sampled farmer and year of measurement, respectively.

We simulate from the proposed RRSM under three different settings as follows;

Case 1: A fixed effects model only

Yrst = τ + βZrs + erst r = 1, 2, . . . , 6; s = 1, 2, ...10; t = 1, 2, . . . , 8

Case 2: A random effects model with random intercepts only

Yrst = τr + βZrs + erst r = 1, 2, . . . , 6; s = 1, 2, ...10; t = 1, 2, . . . , 8

Case 3: A random effects model with both random intercepts and random

slope

Yrst = τrst + βZrst + αrWrst + erst r = 1, 2, . . . , 6; s = 1, 2, ...10; t = 1, 2, . . . , 8

Where the parameters and data are as defined in the previous Chapter.

4.3 Simulation Results

We now present simulation results and explanation from the three cases using tables

and box plots.
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Table 4.1: Regression Coefficient Estimates and their Precision Measures from a
Fixed-effects model

true estimate SE LCI UCI coverage bias rmse
Intercept 10.00 9.971 4.331 1.482 18.459 94.6 0.029 4.331
Fert 0.10 0.100 0.047 0.007 0.193 94.4 0.000 0.047
Educ2 2.50 2.530 1.121 0.332 4.728 94.9 -0.030 1.122
Educ3 5.00 5.017 1.580 1.920 8.113 94.8 -0.017 1.580
Early 2.00 2.041 1.047 -0.011 4.094 95.3 -0.041 1.048
Time -0.5 -0.497 0.150 -0.790 -0.203 94.3 0.003 0.031

In Table (4.1) , we have presented a few explanatory variables which possibly have

some effect on the response variable. These include the fertilizer quantity, the edu-

cation level, ploughing time and time of harvesting. We simulated their estimated

contribution to the response variable and the confidence interval at 5% level of sig-

nificance.

Figure 4.1: A Box Plot of the distribution of the Regression Coefficients of Fixed-
effects Model

In this case, we considered a few explanatory variables which possibly have some

effect on the response variable. These include the fertilizer quantity, the education
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level, ploughing time and time of harvesting. We consider these factors to be constant

across the whole population under study. The intercept is also considered to be fixed.

Figure (4.3.1) above illustrates how each of these factors contributes to the response

variable in addition to the intercept. For instance, higher education level of a maize

farmer contributes most while harvesting time contributes the least to the response

variable.

Table 4.2: Regression Coefficient Estimates of RRSM with Random Intercept

True estimate SE LCI UCI coverage bias rmse
Intercept 10.00 9.982 4.357 1.443 18.521 95.3 0.018 4.357
Educ2 2.50 2.491 1.102 0.331 4.651 94.9 0.009 1.102
Educ3 5.00 5.014 1.597 1.883 8.145 95.2 -0.014 1.597
Early 2.00 1.998 1.047 -0.055 4.051 94.9 0.002 1.047
Time -0.50 -0.500 0.148 -0.791 -0.209 95.1 0.000 0.148

Figure 4.2: A Box Plot showing the distribution of the Regression Coefficients of
Random-intercepts Model
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This simulation considered the intercept alone to be random. That is, its values are

randomly distributed amongst the strata. The explanatory variables are assumed

to be constant across the entire population. It is not a common characteristic that

the intercept is random while the explanatory variables are constant. Indeed, it has

been observed that in most longitudinal studies, varying slope coefficients usually

arise, where both the intercept and the slope coefficients are specific to each stratum.

Figure (4.3.2) shows how each of the explanatory variables contributes to the response

variable in addition to the random intercept, in such a set up.

Figure 4.3: Individual Random Intercepts from the Random-intercepts Regression
Model

Figure (4.3.3) illustrates simulation from a random intercepts model. In this partic-

ular case, we consider six strata, and from each stratum, we consider ten responses.

Homogeneity within a stratum is clearly evident from the figure in the sense that

the randomly selected responses within each stratum are almost the same. It sug-

gests that each stratum has some inherent characteristics which are almost uniform

across the entire stratum, hence yielding almost the same intercept for each response

within the same stratum. It may also suggest that farming practices and inputs
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applied amongst respondents within a stratum are almost similar, hence yielding

almost the same response from each respondent in the same stratum. This explana-

tion is in line with assumption on the assumptions on the population under study.

Further, it is evident from figure 3 that neighbouring strata may possess similar

inherent characteristics and almost the same farming practices since the responses

from the randomly selected respondents are almost the same.

Figure (4.3.4) below illustrates distribution of random intercepts on average as per

stratum. It shows that yields vary from one location to another. This variation in

yield is informed by similar explanation in figure 3. Further, this variation justifies

the use of random-effects model in modelling maize farming and other related stud-

ies, in a given place.

Figure 4.4: Box Plot of Random Intercepts by Sub Locations
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Table 4.3: Regression Coefficient Estimates and their Precision Measures from a
Random Effects Model with both Intercept and Slope being Random

True estimate SE LCI UCI coverage bias rmse
Intercept 10.0 10.098 4.137 1.989 18.206 95.3 -0.098 4.138
Fert 0.1 0.099 0.045 0.011 0.188 95.0 0.001 0.045
Educ2 2.5 2.485 1.108 0.313 4.656 94.3 0.015 1.108
Educ3 5.0 5.028 1.567 1.957 8.099 94.7 -0.028 1.567
Early 2.0 1.982 1.066 -0.107 4.072 95.4 0.018 1.066
Time -0.5 -0.510 0.146 -0.795 -0.224 95.1 0.010 0.146

Figure 4.5: A Box Plot Showing Distribution of Parameters from a Random-effects
Model with both Intercept and Slope being Random
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Figure 4.6: Individual Random Intercepts Coefficients from a Random Effects Model
with both Intercept and Slope being Random

Figure 4.7: Random Intercepts from a Random Effects Model with both Intercept
and Slope being Random

The explanation of figure (4.3.7) is in many ways similar to the explanation of figure

4. The only main difference is that figure 4 considers only the intercept as random

whereas figure 7 considers both the intercept and the explanatory variables as ran-

dom. Indeed, it is evident from figure 7 that variation between locations is clearer.
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4.4 Conclusion

This chapter has presented a simulation study under three settings; fixed effects

model in which it was assumed that all effects are fixed across the entire population,

random effects model in which only the intercept is considered to be random, and the

random effects model in which both the intercept and the slopes are considered to be

random. The outcomes are presented using tables and box plots, and explanation of

each outcome is given. Most importantly, the use of a random-effects model in our

problem and perhaps other related studies has been justified through our simulation.

In the subsequent chapter, we will analyze empirical data and see if the results are

related to the simulation results.
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CHAPTER FIVE

EMPIRICAL STUDY

5.1 Introduction

This chapter presents a test of practicability of our proposed model to a real life

problem; maize farming in Eldoret East District, Kenya. We fit the model using

four-year data of maize production realized as a result of application of various

combinations of inputs (treatments). First, we give an overview of maize farming

in general and particularly maize farming in Eldoret East District. Secondly, we

discuss data collection. This entails suitable sampling technique, data collection

tools, and the strategy for determining the sample size i.e. the number of maize

farmers interviewed. Finally, we perform data analysis, presentation and discussion

of the results.

5.2 Overview of Maize Farming

Mostly, output production per acre of land in a maize farming system varies year after

year. For instance, the following table shows a case of a farmer in which production

kept varying within a period of 10 years (1999-2008).
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Table 5.1: A Case of Production Per Acre in a Period of 10 years (1999-2008)

Year Production/acre(No. of 90 kgs Bags)
1999 15
2000 17
2001 20
2002 25
2003 28
2004 24
2005 35
2006 30
2007 30
2008 33

This scenario is not unique to this particular farmer. Indeed, it is a common ex-

perience to many other maize farmers, even within the same area. The varying

production is as a result of using different inputs and is a clear indication that there

are some dynamics in the maize farming system that are not clear to maize farmers.

Notably, this subjects many of them to making decisions that lead to sub-optimal

production or sometimes, they may realize relatively good production by chance.

It therefore follows that there exist an optimal production guided by many factors

as identified in section 5.3 of this thesis. It is evitable from the varying yearly pro-

duction that these factors must be contributing proportionately to maize production

depending on their amounts used. Otherwise, if they were contributing in the same

proportions, then, the output production would portray Uniform distribution.

Our case study revealed that majority of the maize farmers within Eldoret East Dis-

trict make trials each year by trying various combinations of inputs. The result of
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this is realization of the ever varying production. They do this while seeking optimal

production.

In our study, we consider maize farming as a process that combines a variety of

inputs. From each unit of a particular input, the process derives a certain amount

of the output, with the amount of the output produced being proportional to the

amount of each input consumed. The inputs also have cost per unit hence the total

cost of inputs is also proportional to the amount of inputs consumed. Our decision

variables are the amount of inputs consumed. Our goal is to determine an amount

of each input to be consumed, within specified limits, so that the output thereby

produced meet specified requirements at the least cost.

5.3 Factors that affect Maize Output

This section presents the categories of factors or explanatory variables that affect

maize output, giving some examples of each category.

5.3.1 Quantitative Variables

These are variables which can be measured or weighed using appropriate instruments.

They comprise both dependent and independent variables. In a maize farming sys-

tem, for example, the independent variables may include such variables as quantity

of fertilizer applied per unit of land, Quantity of seeds applied per unit of land, soil

chemical properties (carbon, nitrogen, potassium, iron, ph level etc), soil physical

characteristics (clay content, sand content etc) and the dependent variable is the

yield. Measurement of these variables is usually done in their SI units.

55



To identify these variables, we shall use the symbol X as a random variable to refer

to the entire set of the independent factors, and to refer to an individual factor in

this set, we use the subscripts on the symbol X as; X1, X2,..., Xn , that is, supposing

we have n factors.

5.3.2 Qualitative Variables

These are variables with no natural sense of ordering. They are therefore measured

on a nominal scale. For instance, quality of maize seeds, System of cultivation,

Texture of soil, etc. Qualitative variables can be coded to appear numeric but the

numbers used for coding do not have effect.

Socioeconomic factors can also be treated as categorical variables. These are factors

that characterize an individual or a group within a given social structure. They

include income level, ethnicity, sense of community and many other such factors.

Studies have shown that certain segments of society are exposed to environmental

hazards, and may be more vulnerable to such hazards than other populations. In

most cases, these socioeconomic factors characterize the kind of farming done by

various individuals or groups in terms of inputs used as well as the corresponding

outputs realized.

The quantitative and qualitative variables account for fixed effects only. However,

there may exist some other factors which are random in their nature and hence

cannot be taken into account under these sub sections. Such random factors can be

well taken into consideration in the model by incorporating random intercepts and
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random slopes.

5.3.3 Random Intercepts

In many empirical studies, there may be some inherent characteristics that are only

specific to a certain portion of the population and may significantly contribute to the

performance of the response variable in addition to the applied treatments; quanti-

tative or categorical. These may be referred to as cluster-specific or strata-specific

factors, depending on how the population is partitioned. These characteristics con-

tribute to the response variable in such a way that without application of any treat-

ment (s), various portions of the population can still give different intercepts. In our

application problem, for example, there could be some factors which are specific to

a certain parcel of land or strata i.e. they do not cut across the whole district and

their effect on the response variable may be significant.

To take into account such factors, a model with random intercepts, βit , where

i = 1, 2, ..., n representing various portions of the population and t = 1, 2, ..., Ti rep-

resenting time, is appropriate. In this case, the slope coefficients are assumed to be

constant and the random intercepts are assumed to be identically and independently

distributed (iid) with unknown parameters E (βit) = β and V ar (βit) = σ2 . The

unobservable deviations between the population intercept β and the cluster specific

realizations βit may be interpreted as effects of omitted covariates.

Random intercept models are also called error components or variance components

(Hsiao, 1986). It is interesting to note that a random intercept model also takes into

account intracluster correlation of the Gaussian outcomes.
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5.3.4 Random Slopes

The random intercept models do not alleviate the restrictive assumption that the

slope coefficients are equal for each observation. Varying slope coefficients arise in

particular in longitudinal studies, where intercept and slope coefficients are specific

to each time series. To take into account such parameter heterogeneity, the random

intercept model can be extended in such a way that we treat, not only the intercept,

but also all regression coefficients, as random.

Models where all coefficients are assumed to vary randomly over strata are also called

random coefficient regression models (Hsiao, 1986). We can also note that in a lon-

gitudinal setting, the responses from ith stratum form a time series, and the possible

effects of past responses are also allowed to vary from time series to time series.

Sometimes, however, assuming that some coefficients are stratum-specific is less real-

istic than the assumption that some coefficients are constant across clusters. Suppose

βi1 denote some stratum-specific coefficients and denote the remaining coefficients

which are constant across the remaining strata, then, the parameter vector βi can

be partitioned into βi = (βi1, βi2) with βi2 = β2 for all i. The design vector will

also have to be rearranged in the same manner. Due to the mixing of “fixed” and

“random” coefficients, models of this type can also be called linear mixed models.
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5.3.5 Error-Term Factor

In regression modeling, the variation in the response variable may not be totally

explained by the explanatory variables. Practically, there is, in most cases, a small

percentage of the total variation that may remain unexplained. The error term

represents such unexplained variation. The error term is usually treated as a random

variable. Later in our application problem, factors such as the natural calamities-

hailstone, strong winds etc, can be taken as error terms. For purposes of analysis of

the model, appropriate assumptions are usually specified regarding the error term

depending on the nature of the study being undertaken.

5.4 Frequentist Empirical Results

This section presents empirical results on estimation of our model (3.18) using fre-

quentist approach. We have used the R statistical package to perform the analysis.

5.4.1 Discussion of the Frequency Distributions

The frequency distribution tables generated from the questionnaires are displayed

in Appendix 3. A total of 587 maize farmers were contacted and interviewed. The

interpretation of these tables follows below.

The study established that maize is the staple food to all the people who were in-

terviewed, and so to the entire population in the district. Maize is cultivated alone

or in addition to another crop e.g. wheat, potatoes, etc grown for subsistence or

commercial purpose. Being the staple food, the respondents put much emphasis on
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maize production throughout the entire process of cultivation. For instance, all the

respondents practice mechanized farming i.e. use of tractors in ploughing of land

and planting maize. Over 95% of the respondents practice crop rotation whereby

they don’t plant maize consequently on the same piece of land. Over 95% of the

respondents also plough their land early; about two months prior to planting season,

which is recommendable in sound agriculture. Majority also applies pest control and

weed control two or three times per season. The type of soil in almost the entire

district is loamy, which is favorable to farming.

However, there are some factors which probably work against the production. For

instance, most parcels of land have been cultivated continuously for over 23 years.

Also, most respondents practise burning as a way of clearing their lands in prepara-

tion for ploughing. This is a poor farm preparation method.

5.4.2 Estimation of Parameters

This section presents empirical estimation of the parameters (regression coefficients)

in the model for purposes of fitting our model (3.18) using the maize production data

in which maize production is considered as the response variable and the inputs like

fertilizer quantity, fertilizer type, seed type, seed quantity, e.t.c. are the explanatory

variables. Since the model comprises of fixed and random effects, we categorize the

maize input variables into fixed effects and random effects. We consider strata (loca-

tions) and seed type as the random effects, and the fixed effects include top dresser

quantity, weed control method, pest control frequency per season, cultivation period,

farm preparation method and time of ploughing. Some input variables were found

to be constant amongst all the interviewees and therefore could not be categorized
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into any of the two categories. These include factors like the quantity of fertilizer

and quantity of seed.

Estimation was performed using code. The following were the results realized;
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Table 5.2: Frequentist Estimation of Regression Coefficients in our proposed model

Random effects:
Groups Name Variance Std.Dev.
Stratum (Intercept) 0.25812 0.50806
Seeds Type (Intercept) 0.07200 0.26834
Residual 15.03042 3.87691
Number of obs: 2348, groups: Stratum, 18; SeedsType, 8

Fixed effects:
Estimate Std. Error t value

(Intercept) 19.057445 0.982049 19.406
TopdresserQty50 0.616733 0.408972 1.508
TopdresserQty75 0.311713 0.403987 0.772
WeedcontrolMethod Spray.herbicides 0.558709 0.207289 2.695
PestcontrolFrequency Freq.2 0.209152 0.197881 1.057
PestcontrolFrequency Freq.3 -0.231011 0.228125 -1.013
PestcontrolFrequency Freq.4 0.746269 0.565382 1.320
CultivationPeriod -0.006517 0.011873 -0.549
FarmPreparationMethodHallowing -0.167356 0.432418 -0.387
PloughingPeriod 2.months 1.445772 0.826763 1.749

Correlation of Fixed Effects:
(Intr) TpdQ50 TpdQ75 WdcMS. PFP..F.2 PFP..F.3 PFP..F.4 CltvtP

TpdrssrQt50 -0.355
TpdrssrQt75 -0.368 0.875
WdcntrlMtS. -0.104 -0.104 -0.108
PstcFP..F.2 -0.045 -0.074 -0.105 0.001
PstcFP..F.3 -0.041 -0.052 -0.074 -0.063 0.512
PstcFP..F.4 -0.045 -0.041 -0.015 -0.035 0.206 0.173
CultivtnPrd -0.341 0.034 0.014 0.031 -0.027 -0.050 0.090
FrmPrprtnMH 0.033 -0.042 0.000 -0.017 -0.056 -0.098 0.012 -0.021
PlghnPP..2. -0.837 0.012 0.030 -0.015 -0.009 0.007 0.001 0.017
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5.4.3 Discussion of the Results

The intercept in any regression model represents the base line value of the response

variable assuming no contribution of any explanatory variable. In our analysis un-

der fixed effects, we got the intercept as 19.057445. This implies that even with no

application of any input, the maize yield will be about 19 bags per acre.

The regression coefficient often referred to as the slope, measures the steepness of

a regression line at a given point. It gives the approximate change in the response

variable contributed by a unit change in a given explanatory variable. In our study,

for instance, top dressing is one of the explanatory variables with regression coeffi-

cient 0.616733. This implies that application of 1 kg of top dresser (C.A.N) per acre

of land results into a corresponding change in maize production by approximately

0.616733 kgs per acre of land. Further, this is a positive contribution (increase). The

study also found out that application of 50 kgs per acre of top dresser contributes

to better yield than application of 75 kgs per acre. Probably, much top dresser is

unnecessary.

We also found out that some inputs contribute negatively to the maize yield. For

example, the cultivation period in which we obtained the value of the regression

coefficient as -0.006517. This implies that as land is cultivated continuously for

many years, the level of yield will decline. Further, the box plots below clearly show

how the various explanatory variables contribute to the response variable, including

the intercept.
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Figure 5.1: Box Plot of Maize Yield per acre (in 90 Kgs bags) versus the various
Explanatory variables

Figure 5.2: Box Plot of Deviation from the intercept versus the Explanatory Vari-
ables

From these two figures, it is clear that application of 50 Kgs of top dresser per acre

results in better yield than application of 75 kgs per acre. The reason for this inter-

esting result may be investigated in a different study. This analysis also reveals that

application of a pesticide four (4) times in the entire season gives better yield than
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application of the pesticide three or two times. Further, ploughing the land at least

two months before planting contributes to better yield.

A good estimated regression model has to explain variation of the response variable

as a result of the various explanatory variables. This calls for test of significance

of the explanatory variables. This requires that the error terms ei be normally and

identically distributed with mean 0 and variance σ2; see assumptions A1 and A5.

To check this assumption, we graphed the normal plots of the residuals as shown in

figure (5.4.3) below.

Figure 5.3: Diagnostic Plots for the Residuals

From the figures above, the histogram of residuals, normal plot and the half nor-

mal plot, all indicate approximately normality of the residuals, hence satisfying the

normality assumption A4 . In addition, the plot of the residuals versus the fitted

values clearly indicates randomness of the residuals, which is a desirable feature of
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any good model. This satisfies assumption A1 .

5.5 Bayesian Estimation

In this section, we present results of the Bayesian analysis of our proposed RRSM in

which we employ Gibbs sampling estimation technique to the model using Win bugs

for Bayesian Statistics. Table 7 below presents estimates of the regression coefficients

of our model, together with their corresponding standard errors and t-values.

Table 5.3: Bayesian Estimation of Regression Coefficients of the Proposed Model

Fixed.effects Estimate Std..Error t.value Estimate1

1 Intercept 19.057445 0.982049 19.406 19.05745

2 TopdresserQty50 0.616733 0.408972 1.508 19.67418

3 TopdresserQty75 0.311713 0.403987 0.772 19.36916

4 WeedcontrolMethodSpray.herbicides 0.558709 0.207289 2.695 19.61615

5 PestcontrolFrequencyPest.control.Freq.2 0.209152 0.197881 1.057 19.26660

6 PestcontrolFrequencyPest.control.Freq.3 -0.231011 0.228125 -1.013 18.82643

7 PestcontrolFrequencyPest.control.Freq.4 0.746269 0.565382 1.320 19.80371

8 CultivationPeriod -0.006517 0.011873 -0.549 19.05093

9 FarmPreparationMethodHallowing -0.167356 0.432418 -0.387 18.89009

10 PloughingPeriodPloughing.period.2.months 1.445772 0.826763 1.749 20.50322

It can be observed from this table that application of pest control (three times) and

farm preparation method by hallowing, are input factors that contribute negatively

to the maize production. The other factors result in positive contribution but in var-

ious proportions, with early ploughing of land (at least two months prior to planting)

yielding a larger proportion.

We then considered our response variable Y to have a prior normal with mean µ and
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variance σ2 i.e. Y (µ, σ2) . We performed posterior analysis using Gibbs sampler

(1000 iterations) and figures (5.5.1) and (5.5.2) below are the resulting plots of

posterior mean and posterior standard deviation, respectively.

Figure 5.4: Trace Plot of Posterior mean (1000 iterations)

It can be seen from figure (5.5.1) that the posterior mean oscillates between 19.0 and

19.5 bags of maize, which is in line with the intercept of 19.2 bags.

Figure 5.5: Trace Plot of Posterior Standard Deviation (1000 Iterations)

The posterior standard deviation as shown in figure (5.5.2) lies mainly between 5

bags on the negative side (signifying a reduction from the mean) and 10 bags on the

positive (signifying an increase to the mean or intercept), and in some few cases,

over 10 bags on the positive side (signifying some few extreme outliers), which is

expected under any normal practice.
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5.6 Conclusion

Chapter 5 has provided empirical estimation results of our model based on a four-year

data of maize production. It has also explained the methodologies of how these data

were collected, analyzed and presented, together with explanation of each result.
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CHAPTER SIX

CONCLUSION AND RECOMMENDATION

6.1 Introduction

We now present conclusions and recommendations for further research arising from

our research.

6.2 Conclusion

We achieved the objectives set at the beginning. We considered randomness of the

explanatory variables and therefore deviated from the tradition whereby, in most

situations, assumption of non-randomness of the variables is considered, which is

in most cases, not real in practice. In this respect, we considered a random-effects

response surface model, as a suitable model to our problem. Our consideration was

also informed by the fact that our case study problem i.e. maize production, is lon-

gitudinal in nature. In chapter three, we showed how our random-effects response

surface model can be estimated straightforwardly using Gibbs sampling.

Since our study is applied statistics, we laid much emphasis on the application prob-

lem. We applied our random-effects response surface model to food production,

and in particular, did a case study of maize production in Eldoret East District,

Kenya. An overview of maize farming indicated suitability of our proposed model in

modelling maize production as well as other related studies. The empirical results

realized in chapter five closely resemble the simulation results in chapter four.
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6.3 Suggestions for Further Research

There are a few issues emerging from this research work that could be taken up in

future researches.

In our research, we assumed that each stratum has homogenous inherent charac-

teristics and that the units in one stratum are independent of those in the other

strata. This might not be ideal. For instance, suppose we have two respondents in

two different strata but each is close to the shared boundary, obviously, they cannot

be independent. Such a scenario could form a good case for further research, and is

recommended.

We also assumed no curvature in our model; this again might not be real. Some

curvature might exist. This scenario can also form a case for future research.
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APPENDICES

Appendix 1: Questionnaire

Part I: Biodata [The choices for each question are listed at the bottom of

the table]

Location (Stratum): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Part II: Inputs per Acre [The choices for each question are listed at the

bottom of the table]
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Part III: Site Characterization [The choices for each of the items are listed

at the bottom of the table]
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Part IV: Output per Acre
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Appendix 2: Programming Codes

####################################################################

setwd("C:\\S-Disk\\Research\\JCC\\out")

nloc=10 # number of locations

ni =6 # farmers per location

n=nloc*ni # sample size

nt=12 # number of obs/times

N = n*nt # total num of observations

loc=as.numeric(gl(nloc,ni))

idx=as.numeric(gl(n,nt)) # subject

# set.seed(123) # keep seed for future replica

# loc.coeffs=round(c(0,rnorm(nloc-1,0,1)),2) # location coeff; allow for

above/below zero

loc.coeffs = c(0.00, -0.56, -0.23, 1.56, 0.07, 0.13, 1.72 , 0.46

,-1.27, -0.69)

alpha = 10 # intercept

fert.coeff= 0.15 # coefficient of fertilizer

time.coeffs = c(0.75,0.05) # allow for quadratic time effect

sigma = sqrt(5) # standard devition of the error, yield to vary

between 20-30

loc2=loc[idx] # locations for all

tt = rep(1:nt,ni*nloc) # a vector of time

tt2=tt^2 # time square

#output to file

cat(file="out-fixed-1.txt","Iteration Intercept Fert Loc2 Loc3
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Loc4 Loc5 Loc6 Loc7 Loc8 Loc9 Loc10 Time Time2\n",append=F)

nsim = 1000

for(iter in 1:nsim)

{

Fert=round(runif(n,75,100)) # allow to vary 75 to 100

Fert2=ceiling(rnorm(N,Fert[idx],5)) # fixed per farmer but

with random varitions over time

error = rnorm(N,0,sigma) # error

Yield=alpha+ fert.coeff*Fert2+loc.coeffs[loc2]+

time.coeffs[1]*tt+time.coeffs[2]*tt2 + error

fit.fixed=lm(Yield~Fert2+as.factor(loc2)+tt+tt2)

cat(file="out-fixed-1.txt",iter,fit.fixed$coeff,"\n",append=T)

cat("\tIteration = ",iter,"\n")

}

################################################################

setwd("C:\\S-Disk\\Research\\JCC\\out")

setwd("C:\\Users\\Joseph\\Documents\\Chelule\\out")

nloc=10 # number of locations

ni =6 # farmers per location

n=nloc*ni # sample size

nt=12 # number of obs/times

N = n*nt # total num of observations

loc=as.numeric(gl(nloc,ni))

idx=as.numeric(gl(n,nt)) # subject

# set.seed(123) # keep seed for future replica
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# loc.coeffs=round(c(0,rnorm(nloc-1,0,1)),2) # location

coeff; allow for above/below zero

loc.coeffs = c(0.00, -0.56, -0.23, 1.56, 0.07, 0.13,

1.72 , 0.46 ,-1.27, -0.69)

alpha = 10 # intercept

fert.coeff= 0.15 # coefficient of fertilizer

time.coeffs = c(0.75,0.05) # allow for quadratic time effect

sigma = sqrt(5) # standard devition of the error, yield

to vary between 20-30

loc2=loc[idx] # locations for all

tt = rep(1:nt,ni*nloc) # a vector of time

tt2=tt^2 # time square

ran.ints = scan()

-1.25 -0.51 3.49 0.16 0.29 3.84 1.03 -2.83 -1.54 -1.00 2.74 0.80

0.90 0.25 -1.24 4.00 1.11 -4.40 1.57 -1.06 -2.39 -0.49 -2.29 -1.63

-1.40 -3.77 1.87 0.34 -2.54 2.80 0.95 -0.66 2.00 1.96 1.84 1.54

1.24 -0.14 -0.68 -0.85 -1.55 -0.46 -2.83 4.85 2.70 -2.51 -0.90 -1.04

1.74 -0.19 0.57 -0.06 -0.10 3.06 -0.50 3.39 -3.46 1.31 0.28 0.48

#output to file

cat(file="out-random intercept.txt","Iteration Intercept Fert Loc2 Loc3

Loc4 Loc5 Loc6 Loc7 Loc8 Loc9 Loc10 Time Time2 ranint1 ranint2 ranint3

ranint4 ranint5 ranint6 ranint7 ranint8 ranint9 ranint10 ranint11

ranint12 ranint13 ranint14 ranint15 ranint16 ranint17 ranint18 ranint19

ranint20 ranint21 ranint22 ranint23 ranint24 ranint25 ranint26 ranint27

ranint28 ranint29 ranint30 ranint31 ranint32 ranint33 ranint34 ranint35
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ranint36 ranint37 ranint38 ranint39 ranint40 ranint41 ranint42 ranint43

ranint44 ranint45 ranint46 ranint47 ranint48 ranint49 ranint50 ranint51

ranint52 ranint53 ranint54 ranint55 ranint56 ranint57 ranint58 ranint59

ranint60\n",append=F)

nsim = 1000

library(nlme)

for(iter in 1:nsim)

{

Fert=round(runif(n,75,100)) # allow to vary 75 to 100

Fert2=ceiling(rnorm(N,Fert[idx],5)) # fixed per farmer but with random

varitions over time

error = rnorm(N,0,sigma) # error

Yield=alpha+ fert.coeff*Fert2+loc.coeffs[loc2]+ time.coeffs[1]*tt+

time.coeffs[2]*tt2 + error + ran.ints[idx]

fit.mixed=lme(Yield~Fert2+as.factor(loc2)+tt+tt2,random=~1|idx)

cat(file="out-random intercept.txt",iter,

as.vector(c(fit.mixed$coeff$fixed,fit.mixed$coeff$random$idx)),

"\n",append=T)

cat("\tIteration = ",iter,"\n")

}

################################################################

setwd("C:\\Users\\Joseph\\Documents\\Chelule\\out")

nloc=10 # number of locations

ni =6 # farmers per location
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n=nloc*ni # sample size

nt=12 # number of obs/times

N = n*nt # total num of observations

loc=as.numeric(gl(nloc,ni))

idx=as.numeric(gl(n,nt)) # subject

#set.seed(123) # keep seed for future replica

#loc.coeffs=round(c(0,rnorm(nloc-1,0,1)),2) # location coeff;

allow for above/below zero

loc.coeffs = c(0.00, -0.56, -0.23, 1.56, 0.07, 0.13, 1.72

, 0.46 ,-1.27, -0.69)

alpha = 10 # intercept

fert.coeff= 0.15 # coefficient of fertilizer

time.coeffs = c(0.75,0.05) # allow for quadratic time effect

sigma = sqrt(5) # standard devition of the error, yield to

vary between 20-30

loc2=loc[idx] # locations for all

tt = rep(1:nt,ni*nloc) # a vector of time

tt2=tt^2 # time square

ran.ints = scan()

-1.25 -0.51 3.49 0.16 0.29 3.84 1.03 -2.83 -1.54 -1.00 2.74 0.80

0.90 0.25 -1.24 4.00 1.11 -4.40 1.57 -1.06 -2.39 -0.49 -2.29 -1.63

-1.40 -3.77 1.87 0.34 -2.54 2.80 0.95 -0.66 2.00 1.96 1.84 1.54
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1.24 -0.14 -0.68 -0.85 -1.55 -0.46 -2.83 4.85 2.70 -2.51 -0.90 -1.04

1.74 -0.19 0.57 -0.06 -0.10 3.06 -0.50 3.39 -3.46 1.31 0.28 0.48

#output to file

cat(file="out-random intercept.txt","Iteration Intercept Fert Loc2 Loc3

Loc4 Loc5 Loc6 Loc7 Loc8 Loc9 Loc10 Time Time2 ranint1 ranint2 ranint3

ranint4 ranint5 ranint6 ranint7 ranint8 ranint9 ranint10 ranint11

ranint12 ranint13 ranint14 ranint15 ranint16 ranint17 ranint18 ranint19

ranint20 ranint21 ranint22 ranint23 ranint24 ranint25 ranint26 ranint27

ranint28 ranint29 ranint30 ranint31 ranint32 ranint33 ranint34 ranint35

ranint36 ranint37 ranint38 ranint39 ranint40 ranint41 ranint42 ranint43

ranint44 ranint45 ranint46 ranint47 ranint48 ranint49 ranint50

ranint51 ranint52 ranint53 ranint54 ranint55 ranint56 ranint57 ranint58

ranint59 ranint60\n",append=F)

nsim = 100

library(nlme)

for(iter in 1:nsim)

{

Fert=round(runif(n,75,100)) # allow to vary 75 to 100

Fert2=ceiling(rnorm(N,Fert[idx],5)) # fixed per farmer but with random

varitions over time

error = rnorm(N,0,sigma) # error

Yield=alpha+ fert.coeff*Fert2+loc.coeffs[loc2]+ time.coeffs[1]*tt+

time.coeffs[2]*tt2 + error + ran.ints[idx]
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fit.mixed=lme(Yield~Fert2+as.factor(loc2)+tt+tt2,random=~1|idx)

cat(file="out-random intercept.txt",iter,

as.vector(c(fit.mixed$coeff$fixed,fit.mixed$coeff$random$idx)),

"\n",append=T)

cat("\tIteration = ",iter,"\n")

}

################################################################

setwd("C:\\Users\\Documents\\Chelule\\out")

simrani=read.table("out-random intercept.txt",h=T)

boxplot(simrani[,2:14])

boxplot(simrani[,15:74],axes=F)

axis(2)

axis(1,1:60,1:60)

box()

fixe=simrani[,2:14]

rani=simrani[,15:74]

CI = function(X) c(mean(X)-1.96*sd(X),mean(X)+1.96*sd(X))

outf=round(t(apply(fixe,2,function(x) rbind(mean(x),sd(x),CI(x)[1],

CI(x)[2]))),3)
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outr=round(t(apply(rani,2,function(x) rbind(mean(x),sd(x),CI(x)[1],

CI(x)[2]))),3)

cover <- function(x,t)

{

ci=CI(x)

out= (x>ci[1]) * (x<ci[2])

n=length(x)

round((sum(out)/n)*100,1)

}

rmse <- function(x,t)

{

bias= t-mean(x)

vari=var(x)

mse=bias^2+vari

rmse=sqrt(mse)

round(c(bias,rmse),3)

}

loc.coeffs2 = c(-0.56, -0.23, 1.56, 0.07, 0.13, 1.72 ,

0.46 ,-1.27, -0.69)

alpha = 10 # intercept

fert.coeff= 0.15 # coefficient of fertilizer

time.coeffs = c(0.75,0.05) # allow for quadratic time effect

ran.ints = scan()

-1.25 -0.51 3.49 0.16 0.29 3.84 1.03 -2.83 -1.54 -1.00 2.74 0.80
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0.90 0.25 -1.24 4.00 1.11 -4.40 1.57 -1.06 -2.39 -0.49 -2.29 -1.63

-1.40 -3.77 1.87 0.34 -2.54 2.80 0.95 -0.66 2.00 1.96 1.84 1.54

1.24 -0.14 -0.68 -0.85 -1.55 -0.46 -2.83 4.85 2.70 -2.51 -0.90 -1.04

1.74 -0.19 0.57 -0.06 -0.10 3.06 -0.50 3.39 -3.46 1.31 0.28 0.48

true.coeffs = c(alpha,fert.coeff,loc.coeffs2,time.coeffs)

covrmse=NULL

for(j in 1:13)

covrmse =rbind(covrmse, c(cover=cover(fixe[,j], true.coeffs[j]),

bias = rmse(fixe[,j], true.coeffs[j])[1],

rmse = rmse(fixe[,j], true.coeffs[j])[2]))

ans=cbind(true.coeffs,outf,covrmse)

colnames(ans)=c("true","estimate","SE","LCI","UCI","coverage","bias","rmse")

ans

covrmser=NULL

for(j in 1:60)

covrmser =rbind(covrmser, c(cover=cover(rani[,j], ran.ints[j]),

bias = rmse(rani[,j], ran.ints[j])[1],

rmse = rmse(rani[,j], ran.ints[j])[2]))

ans2=cbind(ran.ints,outr,covrmser)

colnames(ans2)=c("true","estimate","SE","LCI","UCI","coverage","bias","rmse")

ans2
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Appendix 3: Frequency Distribution Tables
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