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ABSTRACT 
 

Consumer behaviour towards different forms of utility varies over time. The 

variation can be so large that the estimated relationship between the response 

variable and its associated explanatory variables is seriously affected. In this 

study, kernel smoothing based conditional quantile approach, a nonparametric 

procedure is used to model volatile demand data. Nevertheless, quantile 

regression procedures work well in non extreme parts of a given data but poorly 

on extreme levels therefore we apply the threshold model of extreme value in 

order to circumvent the lack of observation problem at the tail of the distribution.  

It is shown that nonparametric estimation method has less bias relative to other 

standard methods when the underlying distribution is not known. Various kernel 

estimation methods and extreme value theory are discussed and the asymptotic 

properties of the estimators given. The methods are applied to model extremes 

in electricity demand and fuel price data. The underlying dynamics in the data 

inform of volatility clustering is also estimated using a standard Generalised 

Autoregressive Conditional Heteroscedastic (GARCH) model. A combination of 

nonparametric approach and extreme value theory will be shown as a method 

for estimation of value at risk. Value at risk is chosen in this work as it is 

extensively used in practice. The results indicate that electricity demand 

formation is influenced by time, behavioral variables and also by the forces of 

the market mechanism. It is also found that fuel prices play a crucial role in 
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influencing electricity demand. From the extreme value methods it is found that 

the goodness of fit depends on the estimated parameters that define the shape 

and behavior of the fitted distribution function. This indicates that the extreme 

value methods are case specific, which emphasizes the role of result validation. 

From these methods, it is found that maximum possible information can be 

extracted from the data and the threshold can be determined by calculation 

instead of subjective judgment. It is also easy to implement these methods by a 

complete program. With Generalized Pareto Distribution our estimates of value 

at risk and the expected shortfall for negative rate of change of fuel prices 

indicate that with probability 1% the daily rate of change of fuel prices could go 

as low as -1.3818% and given this rate of change, the average rate of change 

value will be 2.187%. Also with probability 5% the price daily rate of change 

could drop to -0.624% and that when it does the average fall is 1.404%.  These 

results can be used to estimate risk measures in the energy related sectors as 

well as providing insights to producers of energy and also as a reference for 

actual or potential investors in the energy industry. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Introduction to modeling energy demand and prices 

Most of the developed countries have higher energy utilization rate while least 

developed countries are characterized by low energy demand and 

consumption. This means that energy availability accelerates development. 

Every countries energy mix involves a range of national preferences and 

priorities that are reflected in national policies. These policies represents a 

compromise between expected energy shortages, environmental quality, 

energy security, cost, public attitudes, safety and security, available skills and 

production and service capabilities. Relevant national stake holders must take 

all of these into account when formulating an energy strategy. In Kenya there 

have been many programs aimed at improving energy availability although all 

these efforts have not guaranteed Kenya any sustainable energy sufficiency. 

Ironically, due to increased electricity consumption and the extension of its 

power grid to rural constituencies, energy supply has led to severe 

environmental pressure and different energy utilization patterns which have not 

ensured sustainable resources development.   Most of the energy planning 

carried out is on the short and medium term, within the framework of 10-15 

years. However predictions put it that most of the petroleum fuel resources 
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enjoyed now will last for no more than 30-40 years to come; Sokolov and 

McDonald (2006).  Although renewable energy resources are at the disposal of 

most of the developing countries, higher costs and limited intensive applications 

put them to the shelf for some reasons; International Energy Agency (2010). 

Kenya companies lose 9.5 percent of production because of power outages and 

fluctuations; Angelica et al. (2005). Efficiency in energy use is also another 

factor which has impeded the competitiveness of the country products in the 

international market. This has made the government to be under intense 

pressure to be a model player in the control of the energy prices. Similarly the 

private sector which deals with energy issues seems to be reluctant of the high 

change in prices. Nevertheless the pursuit of these goals could have a serious 

impact on the efficiency of the market. Given these differences, many 

researchers have sort to ascertain whether the trend in energy demand can be 

projected with a high level of certainty and accuracy. 

Estimation and projection of energy demand in the current global economy has 

become a crucial task in the risk management market. This is due to the 

unstable regulatory and political environment, lack of information and 

inefficiency in the market. To this end, mathematical modeling offers the 

solution to this type of projection. Models are useful because of their 

interpretability and secondly in modeling theory supports inference and 

interpretation is easy. Mathematical models describe the pattern of change and 

researchers gain more insight on the underlying casual relationship related to 
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pattern and structures of measurements as a result of being taken at different 

times. 

The daily rate of change in electricity usage at the macro level can be attributed 

to the extreme changes in its production cost as a result of ever changing 

requirements. As a result, electricity is seen effectively more like a service than 

a commodity by nature. The physical limitations related to the production, 

consumption and delivery make it an “instantaneous” product, due to the fact 

that electricity can not be stored in bulk. Understanding electricity demand 

needs has thus become a significant element of utmost necessity of the planning 

exercise in the energy sector. The advent of the concept smart grid, which 

entails minimum losses of energy from development to transmission and finally 

use, makes it crucial for the synchronization of electricity production and 

consumption. 

A lot of studies have been done on electricity development in Africa. Mhilu 

(2007) applies the multiple regression techniques for the development of 

regional equations for the estimation of low flow regimes of small catchments. 

On power transmission, Sebitosi, (2010), Sebitosi and Okou, (2010) discusses 

the transmission of energy in sub-Saharan Africa and the wastage associated 

with the transmission and came up with electricity tariff models on energy 

efficient. They conclude that there is   need to understand electricity demand 

characteristic over time. 
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There are several reasons for studying change in utility demand over time, but 

two main areas of interest can be distinguished. First, one may be interested in 

obtaining the structural change reference curves over time and variation of 

change patterns based on observed data. The second motivation is mainly 

scientific and relates to having some knowledge about the relationship between 

the explanatory variable and the response variable which includes interesting 

special features like monotonicity, unimodality and other characteristics 

including the size of the extreme. There are also governmental implications 

which include the qualitative understanding of Influxes with time.  

Regression analysis is one of the most commonly used techniques in statistics 

to study rates of change. The aim of the analysis is to explore the relationship 

between the explanatory and the response variables with the aim of 

understanding the contribution of the explanatory variables and their impact on 

the response variable. The simplest regression models, which are linear 

models, are desirable because they are easy to work with both analytically and 

computationally. The results from linear models are easy to interpret and there 

is a wide variety of useful techniques for testing the assumptions involved. 

None the less, there are cases where the linear models should not be applied 

because of an intrinsic nonlinearity in the data. To attenuate these challenges, 

nonparametric regression provides a means of modelling such data. 

Nonparametric methods are statistical techniques that do not require a 

researcher to specify the distribution of the function being estimated. Instead 



5 
 

the data itself informs the resulting model in a particular manner. In regression 

framework, this approach is also known as “nonparametric smoothing”. The 

methods we survey are known as kernel methods. They are best suited to 

situations involving large data sets for which the number of variables involved is 

manageable. These methods are often employed when common parametric 

specification is found to be unsuitable for the problem at hand. Though kernel 

methods are popular, they are but one of the many approaches towards 

construction of flexible models. Other approaches to flexible modelling include 

Spline, nearest neighbour, neural network and a variety of series methods. One 

of the most popular methods of nonparametric kernel regression was proposed 

by Nadaraya (1964) and Watson (1964), also known as the local constant 

which forms the basis of this study. 

When the distribution is skewed and the conditional variance is not constant, a 

more flexible approach, the conditional quantiles becomes appropriate. The 

estimation of extreme conditional quantiles has become an increasingly 

important issue in effective risk management. This is because extreme events 

often lead to failure and losses and secondly it may be appropriate to be 

equipped with hedge models due to the nature of unobservable extra ordinary 

occurrences. Since data sparseness is more severe in extreme quantiles, fully 

nonparametric methods do not yield reliable estimates. Therefore 

nonparametric quantile regression methods need to be refined with extreme 
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value theory so as to proficiently model extreme quantiles accurately, more 

specifically when quantifying risk measures. 

The use of quantitative risk measures has become an essential management 

tool to be placed parallel with models of rates of change and returns in finance. 

These measures are used for investment and supervisory decisions, risk capital 

allocation and external regulation when there are extra ordinary occurrences. 

Value at risk has become a standard measure of risk employed by financial and 

economic institutions and their regulators. This is essentially due to its 

conceptual simplicity. Value at risk summarizes many complex bad and good 

outcomes to a single number, naturally representing a compromise between the 

needs of different users. This compromise has received a blessing of a wide 

range of users and regulators.  

Measurement of risk associated with commodity markets is a relatively new 

field of research and surprisingly smaller number of papers deals with this topic. 

Oil price risk management has not been extensively studied but oil volatility and 

dynamics have been studied to some extent. Thus this study also investigates 

the distribution which best fit the extreme electricity and fuel data. This 

information is relatively important for risk management purposes as well as for 

pricing of structured commodity derivatives. 
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1.2 Statement of the problem 

In the recent past the energy market in Kenya has been hit by a series of crisis 

ranging from electricity fluctuations to fuel shortage. Some believe that this is 

due to manipulation of imports of energy related products with the aim of 

pushing up prices. It is also believed that companies which have the largest 

share in Kenya’s fuel market have intentionally been importing less fuel than 

they have committed themselves. This has led to a high cost of energy which is 

one of the biggest bottlenecks to the country economic advancement. Given 

these differences, many researchers have sort to ascertain whether the trend in 

energy demand can be projected with a high level of certainty and accuracy. 

Thus we are justified to understand the energy demand characteristics over 

time so that we can be able to project future demand. 

The extreme rate of change of energy production factors expose the electricity 

producers and retailers to significant risks, which they can hedge provided that 

they have good modeling tools of which they can forecast these changes well 

enough. There exists a wide range of mathematical approaches to modeling 

and forecasting change, but often do perform poorly in case of extreme events; 

BystrÖm (2005). Modeling the changes by distributions with finite variance is 

known to be inappropriate, since changes in prices in financial markets do not 

follow a Gaussian distribution, but are rather modeled better by stable 

distributions. Thus we need a model that captures the complete underlying 

structure of electricity demand and the extreme behaviour of the rate of change 
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of fuel prices. We need a technique to analyze a portfolio and make forecasts of 

the likely losses that would be incurred in the market. Particularly, quantifying 

potential losses due to negative fluctuations of a portfolio market value is of 

particular relevance. This will help managers to asses the amount of capital 

reserves to maintain and to help guide their purchases and sales of various 

classes of financial assets. Failure to sufficiently capture the underlying patterns 

of the probable risks can have very serious implications. 

 In the past, risk analysis was done qualitatively but now with the advent of 

powerful computing software, quantitative risk management can be done 

quickly and effortlessly. When extreme observations occur in a data set and 

one understands its pattern and distribution, its analysis is straight forward. 

However in many scenarios, the distribution of extremes is not well known. To 

overcome this challenge, we need to come up with methods which do assume 

that the rate of change of the observed has a distribution which is not known.  
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1.3 Objectives of the study 

The aim of this study is to develop statistical models that define the structural 

change of a time series data. The specific objectives are to 

(a) Analyse the underlying Kenya electricity demand distribution, finding out 

interesting special features like monotonicity, unimodality and the size of 

extrema in the time series data. 

(b) Determine the optimal method of nonparametric smoothing parameter 

selection for electricity demand data among the different methods available 

in literature. 

(c) Determine the Kenya electricity consumers response to change in fuel 

prices on the fast growing electricity demand. 

(d) Model extreme fuel price changes by detecting any special sort of 

dependency over time, quantifying potential losses due to negative price 

fluctuations. 

This study shall answer the questions: 

(i) Is there any pronounced trend in the electricity demand and fuel prices? 

(ii)  What is the nature of volatility in the electricity demand and fuel prices?  

(iii) What are the risks associated with investing in the fuel industry? 

 

 

 

 



10 
 

1.4 Significance of the study 

Electricity demand varies substantially from time to time while its supply tends 

to be relatively stable. This makes electricity as a commodity to behave quite 

differently from most other commodities. Over the last couple of years, 

electricity demand and fuel prices have exhibited extreme changes. These 

sudden changes have contributed to a climate of uncertainty for energy 

companies and investors and a climate of distrust among consumers and 

regulators. The unexpected changes are fundamentally determined by supply 

and demand imbalances of which commodity market participants strongly focus 

on economic models which relate supply and demand to fundamental market 

variables. Since our motivation is mainly scientific we expect this study to give 

insight on the underlying change process over certain phases and get a clear 

quantitative feature in electricity demand fluctuations overtime, we also expect 

the study to help us identify entry points for planning electricity management, 

savings and conservation interventions.  

For risk management and regulatory reporting purposes, a business may need 

to estimate the lower bound on the changes in the value of a portfolio which will 

hold with high probability so as to help determine whether interventions are 

required. With some hidden information about market movements, the 

challenge has been to find a suitable model of the extreme conditional time 

varying statistics for risk measurement that is able to adapt to the rates of 

change distribution. Potential investors need to understand the dynamics in 
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risks and hence arrive at a more cautious approach when making decisions.  

Since parametric curve estimation often does not meet the need of flexibility in 

data analysis, the nonparametric approach makes it possible to estimate 

functions of greater complexity and suggests other distributions. Nonparametric 

approach also provides a versatile method of exploring a general relationship 

between two variables, giving predictions of observations yet to be made 

without reference to a specific parametric model. It provides a tool for finding 

spurious observations and constitutes a flexible method of interpolating 

between adjacent explanatory variables. In addition to the further knowledge 

that will be created by this study, the findings will be a stepping stone for future 

research. 

 

1.5 Literature Review 

Nonparametric methods have attracted a great deal of attention from 

statisticians in the past few decades as evidenced by the arrays of text for the 

methods which are best suited to situation in which one knows little about the 

functional form of the parameter being estimated and also when the number of 

covariates in the model are small and the researcher has a reasonably large 

data set. In particular, the estimation of conditional quantiles has gained 

particular attention because of their useful applications in various fields such as 

econometrics, finance and other related fields. The first published paper on 

kernel estimation, a special type of nonparametric method appeared in 
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Rosenblatt (1956). Modeling both continuous and discrete time series 

phenomenon has been a basic analytical tool in modern statistics since the 

seminal papers by Sharpe (1964), Black and Scholes (1973). The rationale 

behind these papers is that news arrives at the market in both continuous and 

discrete manners and end up having different impact. Several authors have 

studied the asymptotic properties of nonparametric estimation, such as kernel 

and nearest neighbor. They include Stone (1977) and Bhattacharya and 

Gangopadhyay (1990). Some finite-sample properties of regression quantiles 

were discussed by Koenker and Basset (1978) and their asymptotic behavior 

were further developed by Ruppert and Carroll (1980). Koenker and Basset 

(1982) used regression quantile techniques to test heteroscedasticity and 

Powell (1986) applied the idea to censored data in econometrics. 

 It is well known that kernel type procedures have serious draw backs namely 

boundary effects and the asymptotic bias involves the design density. To 

eliminate these drawbacks, Fan et al. (1994) proposed the use of the “check 

function” such as a robustified local linear smoother. This was further extended 

by Yu and Jones (1998) “double-kernel” procedure. An alternative procedure is 

first to estimate the conditional distribution function by using double kernel local 

linear technique of Fan et al. (1996) and then to invert the conditional 

distribution estimator to produce an estimator of a conditional quantile which is 

called the Yu and Jones estimator. Fan and Gijbels (1996), used quantiles to 

quantify the extent to which the poor got poorer and the rich got richer during 
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the Reagan administration (1981-1988).  Although Local linear methods have 

some attractive properties, they have a disadvantage of producing conditional 

distribution function estimators that are not constrained either to lie between 

zero and one or to be monotone increasing. Hall, et al. (1999) proposed a 

reweighted version of the Nadaraya-Watson estimator which is designed to 

posses the superior properties of local linear methods such as bias reduction 

and no boundary effect and to preserve the property of the Nadaraya-Watson 

estimator that it is always a distribution function. Pagan and Ullah (1999) and 

Horowitz (2001) provided examples on how conclusions drawn from a 

convenient but incorrectly specified model more especially parametric models 

can be very misleading leading to misspecification error. 

According to Parzen (1962), the mean can be a misleading summary of a 

distribution; one should always plot a quantile function to check for skewness 

and tails of outliers. Cai (2002), studied nonparametric estimation of regression 

quantiles for time series data by inverting the Reweighted Nadaraya-Watson 

estimator of conditional distribution. He established the asymptotic normality 

and weak consistency. A disadvantage of nonparametric estimation is the low 

frequency observations at the tails which lead to the estimation which exhibits a 

very high volatility. The variance is very high in some cases even infinite.  This 

will result to poor estimates of the tails which are very crucial for risk measures 

estimation. Due to the sparseness of data in extreme regions, the 

nonparametric kernel methods do not guarantee reliable description of the tails. 
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The theory of extreme values mitigates this problem by introducing a parametric 

distribution functions at the tails. 

The extreme quantiles can be estimated by using ideas from Extreme Value 

Theory	(퐸푉푇).  The use of 	퐸푉푇 in financial market calculations is a fairly recent 

innovation. Embrechts et al. (1997) surveys the mathematical theory of 	퐸푉푇 

and discusses its applications. The 	퐸푉푇 can be used to characterize the 

behaviour of the extreme returns and extreme rate of change or the extreme 

tails distribution without tying the analysis down to a single parametric family 

fitted to a whole distribution. Because of the presence of stochastic volatility and 

some distinct important stylized facts such as persistent volatility clustering, 

heavy tails, strong serial dependence and occasionally sudden but large jumps 

in financial and econometric data, it is inappropriate to apply these models 

directly since they are nested in a frame work of identical and independent 

distributed variables which is not consistent with the aforementioned 

characteristics. Danielsson and de Vries (1997) have shown that these models 

do not work well in the common low probabilities such as	0.95. Attempts have 

been made to extend extreme value methodology to take into account volatility. 

They include Barone-Adesi et al. (1988), McNeil and Frey (2000), and Mwita, 

(2003). Their approach revolves around the	퐺퐴푅퐶퐻, with heavy tailed 

innovation. Engle and Manganelli (2004) used regression quantile methodology 

to determine the unknown parameter estimates of Value at Risk (푉푎푅) under 

the assumption that the quantile process is correctly specified. Application of 
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extreme value modeling have been published in the field of alloy strengthen 

prediction, Tryon and Cruse (2000), ocean wave modeling; Dawson (2000) 

memory cell failure; McBulty et al. (2000), wind engineering; Harris (2001), 

thermodynamics of earthquakes; Lavenda (2001), nonlinear beam vibration; 

Dunne and Ghanbari (2001). Other areas include management strategy and 

biomedical data processing. The distinguishing feature of an extreme value 

analysis is the objective to quantify the stochastic behavior of a process at 

usually large or small levels. 

In the study of electricity demand, Lindley and Smith (1972) introduced some 

variant of hierarchical linear models in the research of household electricity 

demand. An excellent exposition of the statistical foundations of such 

hierarchical models from Bayesian standpoint may be found in Smith (1973). A 

classical survey of the studies on the demand for electricity was given by Taylor 

(1975) and it was later on updated and extended to natural gas, heating fuels 

and gasoline by Taylor (1977). Taylor concluded that the price elasticity of 

demand for electricity for all classes of consumers is much larger in the long run 

than in the short run. Hendricks and Koenker (1991) used hierarchical spline 

parameterization of the conditional quantiles for household electricity demand 

using data from Chicago metropolitan and found that there was a very strong 

periodic component and weather impact on base load (25% quantile), while 

estimates at the 95% quantile had a strong periodic shape. Hausman and 

Newey (1995) used kernel estimates of demand functions to estimate the 
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equivalent variation for changes in gasoline prices and the dead weight losses 

associated with increases in gasoline taxes. Blundell et al. (2003) used kernel 

estimate of Engel curves in the investigation of the consistency of household-

level data and came up with the preference theory. Beirlant et al. (2004) used 

the American electric utility company’s data to study the relationship between 

input and output of firms in a productivity analysis. They proposed a flexible 

nonparametric two stage procedure for estimating extreme quantiles in a 

regression setting. They combined the merits of local polynomial quantile 

regression (first step) and recent extreme value methods (second step). 

 Oil price risk management has not been extensively studied but oil volatility 

and dynamics have been studied to some extent among others, Birol (2001). 

The literature on measuring financial risk and volatility via 푉푎푅 models in 

financial industry is vast and is discussed in details by Jorion (2001). Giot and 

Laurent (2003) investigated commodity futures including US benchmark oil 

West Texas Intermediate (WTI) returns in the period 1987-2002. They found 

that WTI returns are characterized by negative skewness and leptokurtosis and 

tested the performance of ARCH and Risk Metrics parametric models. In their 

study, Risk Metrics performed rather poorly at confidence levels above 99%. 

Zikovic and Fatur (2007) investigated WTI oil returns over the period 2000-2006 

and also found negative asymmetry and leptokurtosis. They found that 

parametric normally distributed 푉푎푅 provided correct unconditional coverage at 

90%, 95% and 99% confidence levels both for long and short positions. These 
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findings can probably be attributed to the fact that their out-of-sample period 

was relatively tranquil. 

In this study we extend Beirlant et al. (2004) ideas by developing statistical 

models which investigate what type of distribution best fit the extreme tails of 

Kenya’s electricity demand and fuel prices rate of change. Non parametric 

methods will be used in order to find the quantiles. Secondly we shall apply the 

푉푎푅 model in measuring the risk occurring in the far negative tail of the rate of 

change distribution of fuel prices. 푉푎푅 Models are calculated for a one-day 

holding period at 95%, 99% and 99.9% risk coverage.   

 

1.6 Outline of the Thesis   

This thesis is outlined as follows: In this chapter we introduce the work by giving 

the background information in nonparametric regression and extreme value 

theory. We also state the problem, objectives and the significance of the study. 

In the closing of the chapter a brief literature review on nonparametric methods 

and extreme value theorem is discussed. An overview of one dimensional 

smoothing tools as well as the key ideas on optimal smoothing parameters are 

given in Chapter 2. Nonparametric regressions for time series and models with 

exogenous variables are also explained. In Chapter 3, quantiles are introduced 

and their asymptotic properties are derived. In Chapter 4 different approaches 

of modeling extreme values and risk measures are discussed. In Chapter 5, we 

present the results and discussions. In Chapter 6, we conclude this study by 
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citing some of the unresolved modeling issues and suggestions for further 

research in the market risk management. 
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CHAPTER TWO  

2.0 NONPARAMETRIC REGRESSION ESTIMATION 

2.1 Nonparametric design models  

The general nonparametric regression models are either of fixed or of random 

design, such that if 푛 data points, (푋 ,푌 ), (푋 ,푌 ), … (푋 ,푌 ) have been 

collected, the relationship is modeled as  

																																푌 = 푚(푋 ) + 휀 ,							1 ≤ 푖 ≤ 푛																																																						(2.1.0.1) 

where,  푋  is the predictor variable also known as the regressor, 푌  is the 

response variable and  푚 is the unknown regression function with observation 

error 휀  of which  퐸(휀 ) = 0 and	푉푎푟(휀 ) = 휎 . The fixed design model is 

concerned with controlled non stochastic regressor  푋 variable, this implies that 

the regressors are controlled by the researcher and are simply assumed to be 

measured without error. In fixed design, for any given observation	(푥 ,푌 ), 

푥 ∈ ℜ  and 푌  is an independent random variable with	퐸(푌 ) = 푚(푥 ). 

Random design models are used in observational studies and are common in 

non experimental science. The observed predictor variables are independent 

and identically distributed (푖푖푑) random variables so that 

											푚(푋) = 퐸(푌|푋) = 푦
푓(푥, 푦)
푓(푥) 																																																								(2.1.0.2) 
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푓(푥,푦) is the joint density of (푋,푌) and 푓(푥) = 푓 (푥) is the marginal probability 

function of 	푥. Although the stochastic mechanism is different, the idea of fitting 

the mean function is the same in both cases. 

 

2.2 Smoothing methods  

The term smoothing can be defined as the approximation of the function	푚(푥). 

Every smoothing method is of the form	푚(푥) = ∑ 푤 푌 , where 푤  are the 

weights. The common smoothing methods include the kernel, the nearest 

neighbor, the orthogonal series and the spline method. We concentrate on 

kernel techniques. 

 

2.2.1 Kernel estimation  

Kernel estimators are linear estimators in that we can express the value of the 

estimator at any point 푥 as the weighted sum of the responses. Let us define a 

weight function, 

																					퐾 (푥 − 푥 ) =
1
ℎ퐾

푥 − 푥
ℎ 																																																												(2.2.1.1) 

with 퐾 function supported on [−1,1] that has a maximum at zero. This support 

holds with the exception of the Gaussian kernel. 퐾	, determines the shape of 

the weights and satisfies the moment conditions 

																																								 퐾(푢)푑푢 = 1 																																																																		(2.2.1.2) 
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																																 푢퐾(푢)푑푢 = 0																											 																																															(2.2.1.3) 

			푀 = 푢 퐾(푢)푑푢 ≠ 0 			푎푛푑				푉 = 퐾(푢) 푑푢 < ∞																																	(2.2.1.4)	 

Condition (2.2.1.2) is roughly equivalent to having the weights sum to one and 

condition (2.2.1.3) is a type of symmetry condition that is automatically satisfied 

if 퐾 is symmetric about zero. Kernel function include Gaussian kernel given by  

																									퐾(푢) = √2휋 푒푥푝(−푢 2⁄ )																																																																	(2.2.1.5)  

and the “symmetric Beta family”, which are of the form 

																	퐾(푢) =
1

훽(1 2⁄ ,훾 + 1) (1 − 푢 ) ,			훾 = 0,1, …,																																							(2.2.1.6) 

When 훾 = 0 in (2.2.1.6) we have uniform kernel, when  훾 = 1 we have the 

Epanechnikov kernel, and when	훾 = 3 we have the triweight kernel  

 

     Table 1  The different types of Beta Kernels 

훾 Name of the kernel 퐾(푢) 

0 Uniform 1
2 퐼

(|푢| ≤ 1) 

1 Epanechnikov 3
4

(1− 푢 )퐼(⌊푢⌋ ≤ 1) 

2 Biweight 15
16

(1− 푢) 퐼[ , ](푢) 

3 Triweight 70
81

(1− |푢| ) 퐼(푢) 
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There is no loss in assuming that 퐾 has support on	[−1,1]. This is because any 

kernel with finite support can be rescaled to have support on[−1,1]. Kernels, 

which have infinite support on the entire line, result to estimators with global 

bias difficulties. Parameter (ℎ) in (2.2.1.1) is called the bandwidth or smoothing 

parameter which determines the size of the weights. Small ℎ leads to wigglier 

(rougher) estimators while larger ℎ leads to a more averaging (horizontal) 

estimator. From (2.2.1.1), we obtain the estimator 

																					푚 (푥) = (푛ℎ) 퐾 ℎ (푥 − 푥 ) 푦 																																																(2.2.1.7)	 

If we generalize (2.2.1.7) and replace 푛  by 푥 − 푥  which is more 

appropriate for equally spaced data, we obtain 

푚 (푥) = (푥 − 푥 )ℎ 퐾(ℎ (푥 − 푥 ))푦 				푤푖푡ℎ		푥 = 0																													(2.2.1.8) 

and with expectation,           

ℎ (푥 − 푥 )퐾 ℎ (푥 − 푥 ) 푚(푥 ) 

 If we modify (2.2.1.7) to ensure that the weights sum to one, we have 

푚 (푥) = 퐾 ℎ (푥 − 푋 ) 푦 퐾 ℎ (푥 − 푋 ) 																																										(2.2.1.9) 

The use of estimator (2.2.1.9) when 푥  is random was suggested by Nadaraya 

(1964) and Watson (1964).  
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If we replace(푥 − 푥 )ℎ 퐾 ℎ (푥 − 푥 ) in (2.2.1.8) with   ℎ 푦 ∫ 퐾 ℎ (푥 −

훾) 푑훾 for large 푛  we obtain  

										푚 (푥) = ℎ 퐾 ℎ (푥 − 훾) 푑훾 푦 																																															(2.2.2.0) 

where, 훾 = 0, 훾 ≤ 푥 ≤ 훾 ,			푖 = 1, … , 푛 − 1,					훾 = 1. Rather than a piecewise 

constant approximation as used in estimator (2.2.2.0) we use a piecewise linear 

approximation 휏 (훾) for the estimate	푚(훾),푥 < 훾 ≤ 푥 , to obtain 

																		푚 (푥) = ℎ 퐾 ℎ (푥 − 훾) 휏 (훾)푑훾																																																		(2.2.2.1) 

where, 

휏 (훾) =

푦 																																																																																	훾 ≤ 푥 ,

푦
푥 − 훾
푥 − 푥 + 푦

훾 − 푥
푥 − 푥 , 푥 < 훾 ≤ 푥

푦 ,																																																																																	훾 > 푥

 

Estimators (2.2.1.7) and (2.2.1.8) stem from the work of Priestley and Chao 

(1972). Estimator (2.2.2.0) was originally studied by Gasser and Muller (1979) 

and Cheng and Lin (1981). The closely related estimator (2.2.2.1) was 

proposed by Clark (1977). 

 

2.2.2 Nadaraya Watson Estimator  

 Assume the observation of some variable 푌  have been taken 푛 times for some 

utility at times	푡 ⋯ , 푡 . Let	푦 , be decomposed into two parts, 	푚(∙) the 

regression function which represents the true underlying change curve following 
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the economic and physical potential and 휀  as defined in (2.1.0.1). The errors 휀  

may not depend on time. These errors not only stand for observational error but 

also for economic random variation due to seasonal and other exogenous 

factors. We assume that 0 ≤ 푡 ≤ 푡 ≤ ⋯ ≤ 푡 ≤ 1 where 푡 , 푡 , … , 푡  is the 

explanatory variable analogous to   푥 , 푥 , … ,푥  for ease of notation.  A kernel 

estimator 푚(푡 ) for 푚(푡 ) can be written as: 

																						푚(푡 ) = ∑ 푤 (푡 ; 푡 ⋯ , 푡 :ℎ)푦 																																																									(2.2.2.3)                                  

where  푤 , are the weights given by 

					푤 = (푡 ; 푡 ,⋯ , 푡 ; ℎ) = 퐾 (푡 − 푡 )/ 퐾 푡 − 푡 																																				(2.2.2.4) 

The weights do not depend on {푌 } and therefore  푚(푡 ) is a linear estimator 

which can be expressed as a minimiser of the locally weighted least squares 

																푚(푡 ) = 푌 − 훽 (푡 − 푡 ) 퐾 (푡 − 푡 )		 																															(2.2.2.5) 

Where the squared part of the right hand side of (2.2.2.5) represents the 

polynomial part and the other part represents the local constant.  While the sum 

ranges from 1 to	푛, only those 푦  lying in the interval (푡 − ℎ, 푡 + ℎ) contribute 

to	푚(푡 ). For simplicity, we define (2.2.2.4) as 푔(푡) 푓(푡)⁄  which are the finite 

sample approximation to 

                              푔(푡) = ∫ 푦푓(푡, 푦)푑푦       and    푓(푡) = ∫ 푓(푡,푦)푑푦 
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We first examine the behaviour of the Nadaraya-Watson (푁푊) estimator when 

the observed pairs of data	(푡 , 푦 ), … , (푡 ,푦 ) , are identical and independent.  In 

order to understand the estimator as a whole, we begin with lemmas for the 

asymptotic performance of the numerator and denominator, 푔(푡) and 푓(푡) as 

they approximate 푔(푡) and	푓(푡). We first impose some restrictions on the 

behaviour of the bandwidth ℎ as the sample size grows large and on the 

conditional distribution of the errors. 

Assumption 2.2.1 As the sample size 푛 → ∞ the bandwidth ℎ → 0 in such a way 

that 푛ℎ → ∞ 

Assumption 2.2.2  퐸[휀 |푡 = 푡 ] = 0,푎푛푑		퐸 휀 |풕 = 푡 = 휎 (푡) < ∞ 

Under these assumptions, 푓(푡) and 푔(푡) are consistent estimators of	푓(푡) 

and	푔(푡) . This is quantified in the following lemma  

Lemma 2.1 If 푡 is contained in an open interval of which 푓(푡) has 푝 bounded 

continuous derivatives and 푚(푡) has 푞 bounded continuous derivatives, then 

under Assumption 2.2.1 and Assumption 2.2.2 we have  

																			퐸 푓(푡) − 푓(푡) = 표(ℎ )																																																																						(2.2.2.6) 

																			퐸[푔(푡)] − 푔(푡) = 표(ℎ )																																																																					(2.2.2.7) 

where, 푘 = 푚푖푛{푝, 푞}. If both 푓(푡) and 푔(푡) are infinitely differentiable, then each  

of these biases become 표(ℎ ) for all positive real 푚. 
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If we impose the additional assumptions that the observed pairs of data are 

identical and independent random variables and that 푓,푔	푎푛푑	휎 (푡) are infinitely 

differentiable, then the variance of 푓 and 푔  are also differentiable. 

The next assumption is necessary to ensure that the asymptotic approximations 

we use are valid and to avoid division by zero. 

Assumption 2.2.3 The point 푡 is a continuity point of 휎 (푡),푓(푡) > 퐶 for some 

퐶 > 0 and 푚 and 푓 are each differentiable in a neighbourhood of  푡 

Lemma 2.2 Under Assumption 2.2.1-2.2.4 

	푣푎푟 푓(푡) =
푓(푡)
푛ℎ 퐾 (푢)푑푢 + 표

1
푛ℎ + 푂

1
푛 	

∞

∞

																																																	(2.2.2.8) 

푣푎푟[푔(푡)] =
푚 (푡) + 휎 (푡) 푓(푡)

푛ℎ 퐾 (푢)푑푢
∞

∞

+ 표
1
푛ℎ + 푂

1
푛 																			(2.2.2.9) 

and 

푐표푣 푓(푡),푔(푡) =
푚(푡)푓(푡)

푛ℎ 퐾 (푢)푑푢 + 표
1
푛ℎ + 푂

1
푛 	

∞

∞

																														(2.2.3.0) 

The joint asymptotic normality of 푓 and 푔 will be established via the Liapunov 

condition, which requires a uniform bound on the 2 + 휖	푡ℎ moments of		푦 , for 

some	휖 > 0, such that 

푟 = (|푡 − 휇 | ) 

Then if	lim → = 0, where 푆 = ∑ 휎  and for all 	푎 < 푏, we have 
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lim
→

푃 푎 <
푆
푠 = 훷(푏) −훷(푎) 

where 훷(∙) is the normal distribution function.  

Assumption 2.2.4 There exists positive constant 푀 and 휖 such that for all 	푡 

퐸[푦 | |풕 = 푡] < 푀 

The final assumption forces the conditional variance of the errors to be bounded 

above and below for all	푡. The bound from below is assumed for technical 

simplicity. 

Assumption 2.2.5 There exist positive constant 푏 and 퐵 such that 푏 < 휎 (푡) < 퐵 

for all 푡 

Lemma 2.3 Under Assumptions 2.2.1-2.2.5, for all real 푐  and 푐  (not both zero), 

√푛ℎ 푐 푓(푡)− 퐸 푓(푡) + 푐 푔(푡) − 퐸[푔(푥)] →푁 0,휔(푡)  

where, 

휔(푡) = 푐 + 2푐 푐 푚(푡) + 푐 [푚 (푡) + 휎 (푡)]푓(푡)∫ 퐾 (푢)푑푢∞
∞ . 

This implies the joint asymptotic normality of 푓 and	푔. Once this has been 

shown, a Taylor’s series argument can be employed to show that 푚 has an 

asymptotic normal distribution.  

The performance of the estimator 푚(푡) of the regression function and its 푣푡ℎ 

derivative; 푚( )(푡) is assessed via its mean squared error (푀푆퐸) and mean 

integrated squared error	(푀퐼푆퐸) . An estimator is an 	(푀푆퐸) consistent iff both 

the bias and variance of the estimator, approach zero. Convergence in mean 

square implies convergence in probability. Define 
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푀푆퐸(푡) = 퐸{푚(푡) −푚(푡)}  

and mean integrated squared error 

(푀퐼푆퐸) = 푀푆퐸(푡)푤(푡)푑푡 

with 푤 ≥ 0 a weight function. When 푀푆퐸 is used the main objective is to 

estimate the function 푚(∙) at the point 푡 and when 푀퐼푆퐸 is used the main goal 

is to estimate the whole curve. It can be seen that 	푀푆퐸 has the following bias-

variance decomposition: 

푀푆퐸(푡) = 퐸{푚(푡) −푚(푡)} + 푉푎푟{푚(푡)} 

This is shown in the following theorem by Cai (2002); 

Theorem 2.1 If 푡 is contained in an open interval on which 푓(푡) has 푝 bounded 

continuous derivatives and 푚(푡) has 푞 bounded continuous derivatives, then 

under Assumptions 2.2.1-2.2.6 

√푛ℎ 푚(푡)−푚(푡) + 표(ℎ ) →푁 0,
휎 (푡)
푓(푡) 퐾 (푢)푑푢

∞

∞

 

Where, 푘 = 푚푖푛{푝, 푞}.  To make this intuitive argument more precise, the 푀푆퐸 

of 푚(푡) can be approximated by 

푀푆퐸{푚(푡)} ≅ 휇
푚′(푡)푓 ′(푡)
푓(푡) +

1
2푚

′′(푡) ℎ +
1
푛ℎ푅

(퐾)
휎 (푡)
푓(푡) 																									(2.2.3.1) 

where	푓(푡), is the marginal probability distribution function (푃퐷퐹)of 푡, 휇 =

∫ 푢 퐾(푢)푑푢, 푅(퐾) = ∫퐾 (푢)푑푢 and 휎 (푡) = 퐸(휀 |푡 = 푡) 
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From	(2.2.3.1), while the bias increases as a square of the bandwidth	ℎ, the 

variance decreases hyperbolically with	ℎ. Moreover, the variance depends on 

the data only via the residual variance	휎 (푡) , and the bias only on the first and 

the second derivative of the underlying regression function		푚. Quantitatively, 

bias leads to a flattening of peaks and valleys and little distortions in flat parts of 

the curve. Bias is “conservative” in that it dampens the true structure but does 

not generate artificial structure. Ideally from statistical perspective, the choice of 

퐾 and ℎ should lead simultaneously to low bias and low variability.  

We see that Nadaraya-Watson locally uses one parameter less compared to 

local linear without reducing the asymptotic variance. It suffers from large bias 

and it does not adapt to non uniform designs (the bias can be very large when 

푓 (푥) 푓(푥)⁄  is large), it has zero minimax efficiency unless	푓 (푥 ) = 0. It also 

possesses a larger bias when estimating a curve at a boundary region and is 

not design adaptive; it assigns symmetric weights to both sides for non 

equispaced design.   

Despite these shortcomings, this estimator has the property of positivity where 

the conditional distribution is constrained to lie between 0 and 1 and 

monotonicity (monotone increasing). These properties are advantageous if the 

method of inverting conditional distribution estimator is applied to obtain an 

estimator of a conditional quantile. To overcome these difficulties,  Hall et al.  

(1999) proposed a weighted version of the Nadaraya-Watson estimator. 
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2.2.3 The Weighted Nadaraya-Watson Estimator 

Let 푝 = 푝 (푡) for		1 ≤ 푖 ≤ 푛, denote weight functions of the data 풕 , … , 풕  with the 

property that each	푝 ≥ 0, ∑ 푝 = 1 and  

																													 푝 (푡)(풕 − 푡)퐾 (풕 − 푡) = 0 																																																							(2.2.3.2) 

Of course, 푝 ′푠 satisfying these conditions are not uniquely defined and we 

specify them by maximizing ∏ 푝  subject to the constraints ∑ 푝 (푡) = 1 and 

(2.2.3.2). Computation of the 푝 ′푠 is simplified by the fact that 

푝 (푡) = 푛 {1 + 휆(푡 − 풕 )퐾 (풕 − 푡)} , 

Where	휆, a function of the data and of		푡 is uniquely defined by (2.2.3.2). This is 

computed by using the successive approximation	푡 = 푡 − ( )
( )

, where 	푡  is 

the approximation root of	푓(푡). The Weighted Nadaraya-Watson 

estimator	(푊푁푊) is therefore                                               

																												푚(푡) = {∑ 푤 (푡)퐼(푌 ≤ 푦)} {∑ 푤 (푡)},⁄ 																																(2.2.3.3) 

where,  푤 (푡) = 푝 (푡)퐾 (푡 − 푡)∑ 푝 (푡) 푡 − 푡 퐾 푡 − 푡  

When	λ = 0, then 푚(푡) becomes the classical Nadaraya-Watson estimator. 

Thus 푝 (푡) is a constant for all	푖 making  푚 to be monotone in 푦 and	0 ≤ 푚(푡) ≤

1. Hall et al. (1999) showed that 푚 is first order equivalent to a local linear 

estimator.  
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2.2.3.1 Sampling properties of Weighted Nadaraya-Watson Estimator 

We now impose the following regularity conditions:  

Condition 2.2.1 

(A1). For fixed 푦 and	푡,	푔(푡) > 0, 		0 < 푚(푡) < 1, 푔(∙) is continuous at 푡 and 푚(푡)       

  has  continuous second order derivative, in the neighbourhood of 	푡. 

(A2). The kernel 퐾(∙) is symmetric density satisfying 퐶 = 푠푢푝 |푢퐾(푢)| < ∞ 

(A3). As 푛 → ∞, ℎ → 0 and 푛ℎ → ∞ 

(A4).  Let 푔 , (∙,∙) be the joint density of 푡  and 푡  for	푖 ≥ 2. Assume that   

         푔 , (푢,푣) − 푔(푢)푔(푣) ≤ 푀 < ∞, for all  푢 and 푣 

Theorem 2.2 Suppose Condition 2.2.1 holds, then, as 	푛 → ∞,                                          

											푚(푡)−푚(푡) = ℎ 휇 푚′′(푡) + 표 (ℎ ) + 푂 (푛ℎ) ⁄ 																														(2.2.3.4) 

In addition,    

				√푛ℎ 푚(푡)−푚(푡)− 퐵(푦|푡) + 표 (ℎ ) →푁 0, 휎 (푦|푡) 																																			(2.2.3.5) 

where 	퐵(푦|푡) is the bias term. Also, it can be seen that the asymptotic 푀푆퐸 is                            

						푀푆퐸 =
1
4 ℎ 휇 {푚 (푡)} +

푣
푛ℎ

휎 (푡)
푓(푡) 																																																													(2.2.3.6) 

Remark: From the 푊푁푊 estimator, 푚(푡) → 푚(푡) in probability with a rate, 

which of course implies that, 푚(푡) is consistent. Also the estimator does not 

depend on the asymptotic bias in the design density 	푓(∙). Its dependence is on 

the simple conditional distribution curvature	푚′′(푡).  
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Table 2  The bias and variance of Nadaraya Watson, Local Linear and Weighted 
Nadaraya Watson estimators. 

Estimator Bias Variance 

(푁푊) 1
2 ℎ 푚 (푡) + 푚 (푡)

푓 (푡)
푓(푡) + 휇

+ 표(ℎ )

+ 푂((푛ℎ ) ) 

(푛ℎ ) 푣 휎 + 표{(푛ℎ ) } 

(퐿퐿) 1
2 ℎ 푚 (푡)휇 + 표(ℎ ) + 푂(푛 ) (푛ℎ ) 푣 휎 + 표{(푛ℎ ) } 

(푊푁푊) ℎ 휇 푚 (푡)
2  

푣 휎 (푡)
푛ℎ푓(푡)  

 

 

2.3 Smoothing Parameter Selection 

In nonparametric kernel estimation, the smoothing parameter effectively 

controls the model complexity. When  ℎ = ∞ , local modeling becomes a global 

modeling, when ℎ = 0 the estimate essentially interpolates the data and the 

modeling bias will be small. This can be seen in (2.2.3.6) where the consistency 

of the estimator is basically based on the sum of the bias and variance. Since 

the bias is proportional to ℎ  and the variance proportional to	 , the bandwidth 

has to be taken neither too large nor too small so as not to increase the bias 

and variance of the estimates. The problem can be solved theoretically by 

choosing a bandwidth that balances the trade-off between the bias and the 
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variance components. The positive value ℎ that minimizes any of the selection 

criteria is selected as an optimal smoothing parameter. 

(i) Cross-Validation (퐶푉): The basic idea of 퐶푉 is to leave the points 

{푥 , 푦 }  out one at a time and select the smoothing parameter ℎ that 

minimizes the residual sum of squares and to estimate squared 

residuals for a smooth function at 푥  based on the remaining (푛 − 1) 

points. The 퐶푉 score function to be minimized is given by 

퐶푉(ℎ) =
1
푛 푦 − 푓( )(푥 ) ≡ 퐶푉(ℎ) =

1
푛

푦 − 푓 (푥 )
1 − (푆 ) 	(2.3.0.1) 

where 	푓  is the fit (smoother) for 푛 pairs of measurements {푥 ,푦 }  

with smoothing parameter ℎ and 푓( ) is the fit calculated by leaving 

out the 푖	푡ℎ data point and (푆 )  is the 푖	푡ℎ diagonal element of  the 

smoother matrix 푆 . 푆  is an 푛 × 푛 hat matrix depending on the 푥 

variate and the smoothing parameter. This method is useful for 

assessing the performance of an estimator via estimating its 

prediction error. 

(ii) Generalized Cross Validation	(퐺퐶푉): It is an improved version of (퐶푉) 

in terms of computation. The main idea of 퐺퐶푉 is to replace the 

factors 1 − (푆 )  in (2.3.0.1) with the average score	1 − 푛 푡푟(푆 ), 

where 푡푟(∙) is the trace of the hat matrix. Thus the 퐺퐶푉 approach 

selects the bandwidth ℎ that minimizes: 
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									퐺퐶푉(ℎ) =
1
푛
∑ 푦 − 푓 (푥 )
{1 − 푛 푡푟(푆 )} =

푛 ‖(1 − 푆 )푦‖
[푛 푡푟(1 − 푆 )] 															(2.3.0.2) 

A drawback of the cross-validation type method is its inherent 

variability. Further, it cannot be directly applied to select bandwidths 

for estimating derivative curves. As pointed out by Fan, et al.  (1995), 

the cross-validation type method performs poorly due to its large 

sample variation, even worse for dependent data. Plug-in methods 

avoid these problems. The basic idea is to find a bandwidth	ℎ 

minimizing estimated mean integrated square error. To overcome the 

over-fitting or under-fitting tendency and fit the time series data 

discussed in the next section, we propose the nonparametric version 

of the Akaike Information criterion. 

(iii) Improved Akaike Information Criterion (퐴퐼퐶 ): The basic idea is 

described as follows: by adopting the classical 퐴퐼퐶 for linear models 

under likelihood setting 

−2(푚푎푥푖푚푖푧푒푑	푙표푔푙푖푘푒푙푖ℎ표표푑) + 2(푛푢푚푏푒푟	표푓	푒푠푡푖푚푎푡푒푑	푝푎푟푎푚푒푡푒푟푠) 

select ℎ minimizing 

퐴퐼퐶 = 푙표푔
∑ 푦 − 푓 (푥 )

푛 + 1 +
2{푡푟(푆 ) + 1}
푛 − 푡푟(푆 ) − 2 

= 푙표푔
‖(푆 − 퐼)푦‖

푛 + 1 +
2{푡푟(푆 ) + 1}
푛 − 푡푟(푆 )− 2			 

																= 푙표푔(휎 ) + 휑(푡푟(푆 ),푛)																																																										(2.3.0.3) 
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where, 휑(∙) is chosen particularly to be the form of the bias corrected 

version of the 퐴퐼퐶. 푡푟(∙) is the trace of the smoothing matrix regarded 

as the nonparametric version of degrees of freedom, called the 

effective number of parameters.  

when	휑 푡푟(∙) = −2푙표푔(1− 푡푟(푆 ) 푛⁄ ), then (2.3.0.3) becomes the generalized 

cross validation criterion. 

(iv)  When		휑 푡푟(∙) = −푙표푔(1 − 2푡푟(푆 ) 푛⁄ ), (2.3.0.3) becomes the 푇 

criterion (푅퐶푃) proposed and studied by Rice (1984) for identically 

and independent variabbles. When	푡푟 (푆 ) 푛⁄ → 0, then the 

nonparametric	퐴퐼퐶, the	퐺퐶푉, and 푅퐶푃 are asymptotically equivalent. 

However the 푅퐶푃 requires 푡푟 (푆 ) 푛⁄ < 1 2⁄  and when 푡푟 (푆 ) 푛⁄  is 

large, the 퐺퐶푉 has relatively weak penalty 

Other bandwidth selection criterion includes 

(v) Mallows’ 퐶  criterion: when 휎  is known, an unbiased estimate of the 

residual sum of squares is given by 퐶  criterion of Mallows (1973): 

퐶 (ℎ) =
1
푛

{‖(푆 − 퐼)‖ + 2휎 푡푟(푆 ) + 휎 } 

																			=
1
푛 푦 − 푓 + 2휎 푡푟(푆 ) + 휎 																																				(2.3.0.4) 

Unless 휎  is known in practice 휎  is approximated by 

								휎 = 휎 =
∑ 푦 − 푓 (푥 )

푡푟(1 − 푆 ) =
‖(푆 )푦‖
푡푟(1− 푆 ) 																														(2.3.0.5) 

where 	ℎ is pre-chosen with any of the 퐶푉, 퐺퐶푉, 퐴퐼퐶  or 푅퐶푃 criterion 
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2.4 Nonparametric Regression for Time Series 

2.4.1 Introduction  
Since most economic and financial data are time series, we discuss our 

methodologies and theory under the framework of time series. For linear 

models, the time series structure can often be assumed to have some well 

known forms such as an autoregressive integrated moving average (ARIMA)  

model. However, under nonparametric setting, this assumption might not be 

valid. Such structures can be modeled in various contexts. We concentrate on 

the following scenarios, for which there exist a large body of literature. The first 

scenario is a stationary sequence of random variables {(X , Y ), i ≥ 1}, X ∈ ℜ , Y ∈

ℜ is observed. In econometrics, non-stationarity may be due to evolution of the 

economy, legislative changes, technological changes, political events and 

changes in climatic conditions among others. The observations may be 

dependent via the time index 푡 = 1,2, …  and it is desired to estimate a functional 

of the conditional distribution 퐿(푌|푋) like the mean function or the median 

function	푚(푥). That is,  

																																																			푚(푥) = 퐸(푌|푋 = 푥)																																																						(2.4.0.1) 

The second scenario is of a nonlinear autoregressive time series 

																		푌 = 푚(푌 , … ,푌 ) + 푒 ,						푡 = 1,2, … 																																																	(2.4.0.2) 

with independent innovation shocks 푒 = 푠 . 휉 . One is interested in predicting 

new observations and in estimating the nonparametric autoregressive function 푚 

or the conditional variance function    
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  																	푉 = 푠 = 푉푎푅(푒 |(푌 , …푌 ) = 푥)																																																				(3.1.0.3) 

The first scenario is typical for dynamic economic systems, which are modeled 

as multiple time series. The explanatory variable 푥  may denote an exogenous 

variable and the function of interest is to predict the response variable 푌 for a 

given value of	푋. The second scenario is widely used in the analysis of financial 

and economic time series. In that context the variance function of the 

innovations is of great interest. In a parametric context the variance function is 

often estimated via the autoregressive conditional heteroscedasticity model 

family	(퐴푅퐶퐻) . Engle (1982) introduced this model class and Gouri´eroux 

(1992) gave an overview. Mathematically the second scenario can be mapped 

into the first one. Let us assume a more general time series dependence, which 

is commonly used in the literature, described as follows. 

2.4.2 Stationarity 
A process is said to be strictly stationary if the joint distribution of 푋 ,푋 , … ,푋  is 

the same as the joint distribution of 푋 ,푋 , … ,푋  evaluated at the same set 

of points  푥 ,푥 , … , 푥  , i.e. 

															퐹 , ,…, (푥 , 푥 , … ,푥 ) = 퐹 , ,…, (푥 ,푥 , … , 푥 )																								(2.4.2.1)                     

for all 푡 and for all 푘.  

Let  {푋 }   be a strictly stationary time series for   푛 ≥ 1. The stationary process is 

called strongly mixing if  

                      										sup ℱ , ℱ∞ |푃(퐴 ∩ 퐵) − 푃(퐴)푃(퐵)| ≤ 훼 																				(2.4.2.2)           
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Where 훼 → 0 and ℱ  is the 훼-field generated by	푥 , … ,푥 . The random variable 

푋 here may also stand for the pair (푋,푌) so that the 휎- fields are defined 

appropriately for the regression problem. Mixing dependence is commonly used 

to characterize the dependent structure and it is often referred to as short range 

dependence or weak dependence. This means that as the distance between two 

observations increases, the dependence becomes weaker and weaker very 

faster. The short term dependence does not have much effect on the local 

smoothing method since for any two given random variables	푋  and 푋  and a 

point	푥, the random variables 	퐾 (푋 − 푥) and 퐾 푋 − 푥  are nearly uncorrelated 

as	ℎ → 0.  With 퐾 being a kernel function assigning weights to each datum 

point.  퐾 is supported on [−1,1] and determines the shape of the weights and 

satisfies the moment conditions; ∫ 퐾(푢)푑푢 = 1, ∫ 푢퐾(푢)푑푢 = 0, 

∫ 푢 퐾(푢)푑푢 ≠ 0 and ∫ 퐾(푢) 푑푢 < ∞. The parameter ℎ is the smoothing 

parameter which determines the size of the weights. 

 It is well known that 훼-mixing includes many time series models as a special 

case. The key usage of mixing conditions is contained in the following lemma 

due to Volkonskii and Rozanov (1959);  

Lemma 2.4   Let 푉 , … ,푉  be random variables measurable with respect to the 	휎-

algebras ℱ , … ,ℱ  respectively with 푖 − 푗 ≥ 푤 ≥ 1 and 푉 ≤ 1 for 푗 = 1, … , 퐿. 

then 
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퐸 푉 − 퐸 푉 ≤ 16(퐿 − 1)훼(푤) 

Lemma 2.4 shows that the dependent random variables can be approximated 

by a sequence of independent random variables having the same marginal 

distribution. This can be seen by taking	푉 = 푒푥푝 푖푡 푋 . Thus this lemma 

becomes a statement about the characteristic function of the random variables.  

2.4.3 Local polynomial fitting 
Consider observations (푋 ,푌 ), … , (푋 ,푌 ) that can be thought of as a realization 

from a stationary process. Of interest is to estimate 푚(푥) in (2.4.0.1) and its 

derivatives	푚( )(푥). 푚(푥), can be approximated by a weighted least squares 

regression problem. That is minimize 

               															∑ 푌 − ∑ 훽 (푋 − 푥 ) 퐾 (푋 − 푥 ) 																													(2.4.3.1)                        

Under certain mixing conditions for local polynomial estimators lemma (2.3) 

holds. Let 푓(푥) be the density of 푋  and	휎 (푥) = 푉푎푟(푌 |푋 = 푥). Let	푆, 푆∗ and 

푐푝 denote some moment matrices and vector, then we have the following 

results by Fan and Gijbels (1996); 

Theorem 2.3: If	ℎ = 푂 푛 ( )⁄ , then as		푛 → ∞, 

√푛ℎ 푑푖푎푔 1, … ,ℎ 훽(푥) − 훽(푥) −
( )( )

( )!
푆 푐푝 → 푁{0,휎 (푥)푆 푆∗푆 푓(푥)⁄ }                                                                                                                             

(2.4.3.2) 
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at	푥, a continuity point, whenever 푓(푥) > 0. An immediate consequence of 

Theorem (2.3) is that derivative estimator 푚 (푥) based on the local polynomial 

fitting is asymptotically normal; 

푛ℎ 푚 (푥)−푚( )(푥)∫ 푡 퐾∗푑푡 ! ( )( )
( )!

ℎ → 푁 0, ( !) ( )∫ ∗ ( )
( )

    

    (2.4.3.3) 

where 퐾∗ is the equivalent kernel. When	푣 = 0, (2.4.3.3) gives the asymptotic 

normality of 푚(푥) 

 

2.4.4 Asymptotic properties of nonparametric estimators for time series 

 We derive the asymptotic properties of the nonparametric estimator for the time 

series. Note that the mathematical derivations are different for the  푖푖푑 case and 

time series situations since  퐸[푌 |푋 … ,푋 ] ≠ 퐸[푌 |푋 ] = 푚(푋 ) , which is true for 

the identical and identically distributed case. We consider a simple case where 

푝 = 1 in (2.4.3.1) and the Nadaraya-Watson estimate. Then; 

 

													푚 (푥) =
1
푛 푚(푋 )퐾 (푋 − 푥)/푓 (푥) + 푊 휀 																										(2.4.4.1) 

퐼 , contributes only to the bias and 퐼   gives the asymptotic normality. First we 

derive the asymptotic bias for the boundary points. By Taylors’ expansion, when 

푋  is in	(푥 − ℎ,푥 + ℎ), we have 
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푚(푋 ) = 푚(푥) + 푚′(푥)(푋 − 푥) +
1
2푚

′′(푥 )(푋 − 푥)  

where   푥 = 푥 + 휃(푋 − 푥) with  −1 < 휃 < 1. Then 

퐼 =
1
푛 푚(푋 )퐾 (푋 − 푥). 

If  푝 > 1 (multivariate case), the asymptotic bias (퐵 (푥)) becomes 

         퐵 (푥) = 푡푟 휇 (퐾) 푚′′(푥) + 2푓 ′(푥)푚′(푥) /푓(푥) 																																(2.4.4.2)                        

where	휇 (퐾) = ∫ 푢푢 퐾(푢)푑푢.  Under some regularity conditions it can be shown 

that for 푥  being an interior grid point, 

           					푛ℎ 푉푎푟	(퐼 ) → 푉 (퐾)휎 (푥) 푓(푥)⁄ = 휎 (푥)																																												(2.4.4.3)                              

where;  휎 (푥) = 푉푎푟(휀 |푋 = 푥). The asymptotic normality is 

    	√푛ℎ 푚 (푥)−푚(푥)− 퐵 (푥) + 표 (ℎ ) → 푁{0, 휎 (푥)}																										(2.4.4.4)   

which as been proved by Cai (2002) as shown in appendix (퐴4).    

            

2.5 Bias-corrected confidence bands   

Consider a nonparametric regression model 

																																			푦 = 푚(푥 ) + 휖 ,							푡 = 1,2, … 																																													(2.5.0.1) 

where 	{휖 } is a sequence of 	푖푖푑 random variables with 퐸(휖 ) = 0 and 퐸(휖 ) =

휎 ; {(푥 ,푦 )} is a sequence of observations and for simplicity we assume that 

푥 ∈ [0,1] with density function 푓(푥). Suppose that 푚(푥) is an estimator 

of		푚(푥); then a 100(1− 훼)% confidence bands is of the form  

									 lim
→∞

[푃푟{|푚(푥)−푚(푥)| ≤ 푙 (푥),푓표푟	푎푙푙	푥 ∈ [0,1]}] ≥ 1 − 훼																				(2.5.0.2) 
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for some 푙 (푥).  To find a solution to (2.5.02) we need the asymptotic 

distribution of	sup |푚(푥)−푚(푥)|. Secondly the supremum over [0,1] makes 

the distribution very sensitive to the estimator	푚(푥). Since there is a bias in the 

estimator of 푚(푥) using Nadaraya-Watson estimation and local polynomial 

smoothing we introduce a bias correction term in the estimator when 푥  is 

random designed and under dependence. The method can be generalized for 

fixed non uniform design.  

We assume that {(푥 , 푦 )} is a strongly mixing sequence, which includes 

independent and identically distributed observations case and many time series 

models. Also under some conditions, autoregressive moving average models, 

autoregressive conditional heteroscedastic models and other nonlinear time 

series models are strongly mixing sequences with mixing coefficients of 

geometric rates. We use the local linear smoother with a correction to a bias 

term to provide confidence band which works well for randomly designed 		푥  . 

We start by considering the simplest case, the Nadaraya-Watson estimator of 

푚(푥) as discussed in section 2.2.2. Using condition (2.2.1) we have shown that 

	퐸 푚 , (푥) = 푚(푥) + 푚′(푥)푓 ′(푥)ℎ 푓(푥) + 푚′′(푥)ℎ 2⁄ + 표(ℎ )⁄ 														(2.5.0.3) 

Uniformly for 	푥 ∈ [0,1]. When 푥  is randomly designed on [0,1] then 푓 ′(푥) ≡ 0 

and the main part of the bias is	푚′′(푥)ℎ 2⁄ . An effective way of removing this 

bias is by using the local linear smoother. According to Fan (1993), the local 

linear smoother of 푚(푥) is 
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																																								푚 (푥) = 푤 , (푥)푦 푤 , (푥)																															(2.5.0.4) 

where 

푤 , (푥) = 퐾
푥 − 푥
ℎ 푠 , , −

푥 − 푥
ℎ 푠 , ,  

with 

																																		푠 , , = 퐾
푥 − 푥
ℎ

푥 − 푥
ℎ ,					푙 = 0,1, … 																							(2.5.0.5) 

푚 (푥)  can then be expanded as 

																																	퐸{푚 (푥)} = 푚(푥) + 푚′′(푥)ℎ 2⁄ + 표(ℎ )																																(2.5.0.6) 

To obtain an estimator of 푚′′(푥) 2⁄  denoted by 푚 (푥) we use local third order 

polynomial fitting of Fan and Gijbels (1996), whereby to estimate 푚( )(∙) on the 

interval [푎,푏] using the 푝  order polynomial fit, the most appropriate and simple 

choice is		푝 = 푣 + 1. Thus the estimator of 푚 (푥) is the third element of   

																					 푚 , (푥),푚 , (푥),푚 , (푥),푚 , (푥) = 푆 푆 																																(2.5.0.7) 

where 	푆 = 푠 , , ,
, 푠 , ,  is defined as in (2.5.0.5) with 	ℎ and 퐾(∙) 

replaced by 푏 and 퐾 (∙), another bandwidth and kernel function; 

푆 = (푎푦 ,푎(푥 − 푥)푏 푦 , 푎(푥 − 푥) 푏 푦 , 푎(푥 − 푥) 푏 푦 )  

where 

푎 = 퐾 {(푥 − 푥)푏 } 

We shall then construct the confidence band for 푚(푥) in the form 
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		 푚(푥): 푚 (푥)−푚 , (푥)ℎ −푚(푥) ≤ 푙 (푥),푓표푟	푎푙푙	푥 ∈ [0,1] 																					(2.5.0.8) 

For the 푘	푡ℎ order polynomial fitting the bias term is 푚( )(푥)ℎ (푘 + 1)!⁄  and 

the optimal bandwidth is of order 푂 푛 ( )⁄  as shown by Fan and Gijbels 

(1996). Most of the data driven band widths also have this rate. However for the 

non-corrected confidence bands, we can only allow the bandwidth to achieve a 

rate of 푂 푛 , 1 (2푘 + 3)⁄ < 훿 < 1 3⁄  as shown by Härdle (1989). The left hand 

limit for 훿 is due to the bias term 

푚( )(푥)ℎ (푘 + 1)!⁄  

The bias term needs to be estimated separately to use the data driven 

bandwidth. This is why we use the local linear smoother and local third order 

polynomial fitting to estimate 푚(푥) and 푚 (푥) respectively. 

 

2.6 Modeling dynamics using nonparametric methods  

 Modeling the dynamics of macroeconomic factors is one of the most important 

aspects of short rate movement description. The underlying process of interest 

{푌 , 푡 ≥ 0}  is often modeled as a time homogenous diffusion (volatility) process 

or stochastic differential equation 

																																					푌 = 휇(푌 )푑푡 + 휎(푌 )푑푤 																																																		(2.6.0.1) 

where 푌  is a stationary transformed series, and the smooth functions: 

휇(∙); is the percentage drift of 푌   which is the instantaneous mean and 

휎(∙); is the percentage volatility or the instantaneous variance. 
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휇(∙) and		휎(∙) are constants which determine the dynamics of the model. 

푤 , is a stochastic process where,  {푤 }   satisfies the following conditions:  

Condition 2.2.2 

i. For each 푠 ≥ 0 and 푡 > 0 the random variable 푤 −푤  has the normal 

distribution with mean zero and variance	휎 . 

ii. For each 푛 ≥ 1 and any times	0 ≤ 푡 ≤ 푡 ≤ ⋯ ≤ 푡 , the random variables 

푤 − 푤  are independent. 

iii. 푤 = 0 

iv. 푤  is continuous in 푡 ≥ 0 

There are two basic approaches of identifying 휇(∙) and	휎(∙). The first is the 

parametric approach which assumes some parametric forms of 휇(∙,훽) and 

	휎(∙,훽) and estimates the unknown model parameters, say	훽. The second 

approach is nonparametric which does not assume any restrictive functional 

form for 휇(∙) and	휎(∙) beyond Condition 2.2.2. Since the time series sequence is 

observed at equally spaced time points, we use the infinitesimal generator, the 

first order approximation of moments of	푌 , a discretized version of the Ito’s 

process. The drift and diffusion are respectively the first two moments of the 

infinitesimal conditional distribution of		푌 : 

																																																				
휇(푌 ) = lim

∆→
∆ 퐸(푌 |푌 )

휎 (푌 ) = lim
∆→

∆ 퐸(푌 |푌 ) 																														(2.6.0.2) 

The drift describes the movement of 푌  due to time changes, while the 

diffusion term measures the magnitude of random fluctuations around the drift.  
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According to Bandi and Nguyen (2000), the approximations of the drift and 

diffusion of any order display the same rate of convergence and limiting 

variance so that the asymptotic argument in conjunction with computational 

issues suggests simply using the first order approximation of Santon (1987) that 

is  

휇(푌 )( ) =
1
∆퐸

{푌 ∆ − 푌 |푌 } = 푂(∆) 

Suppose we observe 푌  at 푡 = 휏∆, 휏 = 1, … , 푛 in a fixed time interval [0,푇] 

Denoting  the random sample as 푌( ) ∆  then it follows from (2.6.0.2) that 

the first order approximations of 휇(푌 ) and 휎(푌 ) lead to  

휇(푌 ) ≈
1
∆퐸 푌 푌( ) ∆ = 푦 		푎푛푑 

																														휎 (푌 ) ≈
1
∆퐸 푌 푌( ) ∆ = 푦 																																												(2.6.0.3) 

for all 1 ≤ 휏 ≤ 푛 − 1, where 푌 = 푌( )( )∆ − 푌( ) ∆.  휇(푌 ) and 휎 (푌 ) 

becomes classical nonparametric regression problem and a nonparametric 

smoothing approach can be applied to estimate them. The 푊푁푊 estimators for  

휇(푌 ) and 휎 (푌 ) are given for any grid point	푦 , respectively by  

휇̂(푦 ) =
1
∆
∑ 푌 퐾 푦 − 푌( ) ∆ 푤 (푦 )
∑ 퐾 푦 − 푌( ) ∆ 푤 (푦 )

		 

푎푛푑																						휎(푥) =
1
∆
∑ 푌 퐾 푦 − 푌( ) ∆ 푤 (푦 )
∑ 퐾 푦 − 푌( ) ∆ 푤 (푦 )

																								(2.6.0.4) 

Since   



47 
 

휕푌 = 휇(푌 )휕 + 휎(푌 )휖√휕 

where 휕푌 = 푌 − 푌 , 휖~푁(0,1),  푌  and 휖   are independent, therefore 

since the drift is of order 푑푡 and diffusion has a lower order √푑푡 as  (푑푤 ) =

푑푡 + 푂((푑푡) ) for infinitesimal changes in time, and the local time dynamics of 

the sampling paths reflects more of the diffusion than those of the drift term. 

Therefore where ∆ is very small, it becomes much easier for the identification of 

the diffusion term than the drift term. Therefore using (2.6.0.4) to estimate 

휎 (푦 ) we observe that the drift 

휇(푌 ) =
1

2휋(푌 )
휕[휎 (푌 )휋(푌 )]

휕푌  

where 휋(푌 ) is the stationary density of 	{푌 }. 

Therefore 

휇̂(푦 ) =
1

2휋(푦 )
휕{휎 (푦 )휋(푦 )}

휕푦  

If the process 푌  in (2.6.0.1) represents a rate of change then we have 

푌(푡 + ∆푡) − 푌(푡) = 휇 푡,푌(푡) ∆푡 + 휎 푡,푌(푡) ∆푤(푡) 

where,		∆푤(푡) = 푤(푡 + ∆푡)− 푤(푡). To make the process precise, by letting 

∆푡 → 푑푡 we obtain the following stochastic differential equation 

																										푑푌(푡) = 휇 푡,푌(푡) 푑푡 + 휎 푡,푌(푡) 푑푤(푡)																																									(2.6.0.5) 

With the initial condition		푌(0) = 푎,   (2.6.0.5) can be expressed as   

푌(푡) = 푎 + 휇 푠,푌(푠) 푑푆 + 휎 푠,푌(푠) 푑푤(푠) 
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In order to guarantee the existence of the stochastic integral ∫ 푔(푠)푑푤(푠) we 

have to impose some kind of integratebility conditions on	푔 and the class of ℒ  

turns out to be natural. 

Condition 2.2.3 

1. The process 푔 belongs to the class ℒ [푎, 푏] if the following conditions are 

satisfied. 

 (A1)  ∫ 피[푔 (푠)]푑푠 < ∞ 

 (A2) The process 푔 is adapted to the ℱ - filtration. 

2. The process g belongs to the class ℒ [0, 푡] for all	푡 > 0. 

Assume	푔(푡) ∈ ℒ [푎,푏], assume also that 푔(푡) is a simple function hence we 

can define a partition 푎 = 푡 < 푡 … < 푇 = 푏 such that 푔 is constant in the time 

intervals	푡 − 푡 . We can then define the stochastic integral 

																				 푔(푠)푑푤(푠) = 푔(푡 )[푤(푡 ) −푤(푡 )] 																																								(2.6.0.6) 

where we have evaluated 푔(푠) at 푠 = 푡  over the time interval [푡 , 푡 ). Note that 

the time interval includes the point 푡  and excludes	푡 . 

If 푓(푆, 푡) is a deterministic function of 푆 and time 푡 we approximate the change 

in 푓 due to a change in both 푆 and 푡 as 

																																									푑푓(푆, 푡) =
훿푓
훿푡 푑푡 +

훿푓
훿푆 푑푆																																																							(2.6.0.7) 

Assume 푓 only depends on	푆, then 

∆푓 ≡ 푓(푆 + ∆푆) − 푓(푆) 
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= 푓 ′(푆)∆푆 +
1
2!푓

′′(푆)(∆푆) +
1
3!푓

′′′(푆)(∆푆) + ⋯	 

If 푆 is stochastic and	푑푆 = 푑푤. Then 

∆푓(푆) = 푓 ′(푆)∆푆 +
1
2!푓

′′(푆)(∆푆) +
1
3!푓

′′′(푆)(∆푆) + ⋯ 

= 푓 ′(푆)∆푤 +
1
2!푓

′′(푆)(∆푤) +
1
3!푓

′′′(푆)(∆푤) + ⋯ 

			= 푓 ′(푆)∅∆푡 ⁄ +
1
2! 푓

′′(푆)∅ ∆푡 ⁄ +
1
3!푓

′′′(푆)∅ ∆푡 ⁄ + ⋯																															(2.6.0.8) 

where 	∆푤 = ∅∆푡 ⁄ ,∅~푁(0,1). 

Assume that the process 푆 satisfies the following stochastic differential equation 

																																	푑푆 = 휇(푆, 푡)푑푡 + 휎(푆, 푡)푑푤(푡)																																																				(2.6.0.9) 

where 휇(푆, 푡) and 휎(푆, 푡) are adapted processes. Let 푓 be a twice continuous 

differentiable function then 

푑푓(푆, 푡) =
휕푓
휕푡 + 휇(푆, 푡)

휕푓
휕푆 +

1
2휎

(푆, 푡)
휕 푓
휕푆 푑푡 + 휎(푆, 푡)

휕푓
휕푆 푑푤 

In modeling rates of change  

																																															
푑푆
푆 = 휇푑푡 + 휎푑푤(푡)																																																										(2.6.1.0) 

Naïve solution of the stochastic differential equation would be: 

푑푆
푆 = 휇푑푠 + 휎 푑푤(푠) 

ln
푆(푡)
푆(0) = 휇푡 + 휎푤(푡)			. 
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Hence 

																																										푆(푡) = 푆(0)푒 ( )																																																												(2.6.1.1) 

Let	푓 = ln푆, rewriting (2.6.1.0) as 푑푠 = 푆휇푑푡 + 푆휎푑푤(푡) with 휇(푆, 푡) = 휇푆 

and	휎(푆, 푡) = 휎푆, we can show that this leads to the naïve solution (2.6.1.1). 

 Let  

푑(ln푆) = 푆휇
1
푆 −

1
2 푆 휎

1
푆 푑푡 + 푆휎

1
푆 푑푤 

= 휇 −
1
2휎 푑푡 + 휎푑푤 

Hence by integrating both sides we obtain 

푆(푡) = 푆(0)푒 ( ) 

which is the naïve solution with an extra term 휎 푡.    

In the application, let the integrand be a Wiener process representing how 

much stock an institution holds and the integrator be the movement of the 

prices. The Itos’ stochastic integral represents the pay off of a continuous time 

trading strategy consisting of holding an amount 퐻  of the stocks at time		푡, 

which is how much money an institution has in total including what out stock is 

worth at any given movement. We chose a sequential partitions of the interval 

from 0 to 푡 then we construct the Riemann sums. The limit when computing the 

Riemann sum is taken in probability as the mesh of the partition goes to zero. 

The main insight is that the integral can be defined as long as the integrand is 

adapted, which loosely means that its value at time 푡 can only depend on the 
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information available up until this time. This prevents the possibility of unlimited 

gains through high frequency trading. 

                                           

2.7 Models with exogenous variables   

 Most of the characteristics outlined in the previous section have been 

univariate, relating to the series of only information contained in that series 

history. But it is believed that demand and financial asset prices may contain 

relevant information of the market around them. It is possible that deterministic 

events also have an impact. They include among others company 

announcements, macroeconomic announcements and even deterministic time-

of-day effects which may all have an influence on the process. Andersen et al. 

(2003), found that the volatility of the deutche mark-dollar exchange rate 

increases markedly around the time of the announcement of U.S. 

macroeconomic data, such as the employment report, the Producer Price Index 

or the quarterly Gross Domestic Product. Glosten et al. (1993) found that 

indicator variables for October and January assist in explaining some of the 

dynamics of the conditional volatility of equity returns. 

Let {푌 ,푋 ,푍 } ∞
∞  be jointly stationary process, where 푋  and 푍  take values in 

ℜ  and ℜ  with 푝, 푙 ≥ 0 respectively. The regression surface is defined by 

                         													푚(푥, 푧) = 퐸{푌 |푋 = 푥,푍 = 푧}																																								(2.7.0.1)                              

Here, 푌  is the dependent variable measurable on the real line and it is assumed 

that	퐸|푌 | < ∞. 푋 ∈ ℜ , (푝 ≥ 1), is a vector of possibly endogenous explanatory 
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variables and	푍 ∈ ℜ , (푙 ≥ 1), is a vector of exogenous explanatory variables. 

If	푙 = 0, then 푍 is not in the model.  The regression function 푚(∙,∙) defined in 

(2.7.0.1) can be decomposed as the sum 

                        																	푚(푥, 푧) = 휇 + 푔 (푥) + 푔 (푧)																																									(2.7.0.2)                                

If we assume that 퐸{푔 (푋 )} = 0 and	퐸{푔 (푍 )} = 0, then the projection of 

푚(푥, 푧) on the 푔 (푥) direction is defined by 

        																	퐸{푚(푥,푍 )} = 휇 + 푔 (푥) + 퐸{푔 (푍 )} = 휇 + 푔 (푥)																				(2.7.0.3)     

To estimate the unknown components in (2.7.0.2), the first initial estimated 

values of all components will be obtained. Local linear method will be used to 

estimate directly the high dimension regression surface and then these 

averages of regression surfaces over the rest of the variables is obtained to 

stabilize the variance. At the second stage the local polynomial technique is 

used to estimate any additional components by using the initial estimated 

values of the rest of the components.           

To get the estimate of	푔 (∙), we use a small bandwidth ℎ  so that the bias can 

be asymptotically negligible. Let the additional components have continuous 

second partial derivatives so that 푚(푢,푣) can be locally approximated by a 

linear term in a neighbourhood of (푥, 푧) namely,	푚(푢, 푣) ≈ 훽 + 훽 (푢 − 푥) +

훽 (푣 − 푧), with 훽  depending on 푥 and 푧, where 훽   denotes the transpose of 

훽 . Let 퐾 (∙) and 퐾 (∙) be symmetrical kernel functions in  ℜ  and ℜ  and 

ℎ (푛) > 0 and ℎ = ℎ (푛) > 0 be bandwidths in the step of estimating the 
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regression surface. Let 훽  be the minimiser of the following locally weighted 

least squares 

{푌 − 훽 − 훽 (푋 − 푥)− 훽 (푍 − 푧)} 퐾 (푋 − 푥)퐾 (푍 − 푧) 

where 퐾 (∙) = 퐾(∙ |ℎ) ℎ⁄  and 퐾 (∙) = 퐾(∙ |ℎ) ℎ⁄  then the local linear estimator 

of the regression surface 푚(푥, 푧) is 푚(푥, 푧) = 훽 . Using (2.7.0.3) and computing 

the sample average of 푚(∙,∙) the estimators of 푔 (∙) and 푔 (∙) become 

푔 (푥) =
1
푛 푚(푥,푍 ) − 휇̂ 				푎푛푑		푔 (푧) =

1
푛 푚(푋 , 푧) − 휇̂		 

where		휇̂ = 푛 ∑ 푌 . Then using the partial residuals  푌∗ = 푌 − 휇̂ − 푔 (푍 ) we 

apply the local linear regression technique to the regression model	푌∗ =

푔 (푋 ) + 휀∗. To estimate 푔 (∙) we solve the weighted least squares problem 

																							 {푌∗ − 훽 − 훽 (푋 − 푥)} 퐽 (푋 − 푥)																																														(2.7.0.4) 

where 	퐽(∙) is the kernel function in ℜ  and ℎ = ℎ (푛) > 0 is the bandwidth at 

the second stage. Minimizing (2.7.0.4) with respect to 훽  and 훽  gives the 

estimate of 푔 (푥) denoted by	푔 (푥) = 훽 , where 훽  and 훽  are the minimiser of 

(2.7.0.4). 

2.7.1 Sampling properties of models with exogenous variables 
To establish the asymptotic normality it is assumed that the initial estimator 

satisfies a linear approximation; 
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	푔 (푍 )− 푔 (푍 ) ≈
1
푛 퐾 (푍 − 푍 )휏(푋 ,푍 )훿 +

1
2 ℎ 푡푟{휇 (퐾 )푔 (푍 )}					(2.7.1.1) 

where 훿 = 푌 −푚(푋 ,푍 ) and 휏(푥, 푧) = 푝 (푥) 푝(푥, 푧)⁄  

Theorem 2.4 If bandwidth ℎ  and ℎ  are chosen such that	ℎ → 0,	푛ℎ → ∞, 

ℎ → 0 and 푛ℎ → ∞ as 푛 → ∞ then according to Masry and Fan (1997): 

푛ℎ 푔 (푥)− 푔 (푥)− 휅 − 표 (ℎ + ℎ ) →푁{0, 푣 (푥)} 

where κ is the asymptotic bias given by 

휅 = 푏푖푎푠(푥) =
ℎ
2 푡푟{휇 (퐽)푔 (푥)}−

ℎ
2 푡푟 휇 (퐾 )퐸(푔 (푍 )|푋 = 푥)  

and the asymptotic variance is 푣 (푥) = 푣 (퐽)퐵(푥). Here 

																										퐵(푥) = 푝 (푥)퐸{휎 (푋 ,푍 )|푋 = 푥}																																															(2.7.1.2) 

If 푋  and 푍  are correlated when 휎 (푥, 푧) is a constant then it follows from 

Cauchy Schwarz inequality that  

퐵(푥) =
휎
푝 (푥) 푝 ⁄ (푧|푥)

푝 (푧)
푝 ⁄ (푧|푥)푑푧 ≤

휎
푝 (푥)

푝 (푧)
푝(푧|푥)푑푧 = 퐴(푥) 

푝(푥, 푧), denotes the joint density of 푋  and	푍 , 푝 (푥) denotes the marginal 

density of	푋 , 푝 (푧) is the marginal density of 푍 , 푣 (퐾) = ∫퐾 (푢)푑푢 and 

휇 (퐾) = ∫ 푢푢 퐾(푢)푑푢. 

Masry and Fan (1997) showed that the optimal estimate of 푔 (푥) denoted by 

푔∗(푥) is asymptotically normally distributed. This is by using (2.7.0.4) in which 

the partial residuals 푌∗ is replaced by the partial error	푌 = 푍 − 휇 − 푔 (푍 ). Thus  
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푛ℎ 푔∗(푥)− 푔 (푥)−
ℎ
2 푡푟 휇 (퐽)푔′′(푥) + 표 (ℎ ) →푁{0, 푣 (푥)} 

This is in agreement with Theorem 2.4, which shows that the estimator share 

the same asymptotic bias and variance if	ℎ = 표(ℎ ). 

 

2.7.2 Consistency  

This section gives conditions under which 퐸‖푔 − 푔‖ → 0 as 푛 → ∞ in model 

(2.7.0.2). 

Let 

퐾 , (푣) = 퐾 푣 ℎ  

where 퐾 denote a continuously differentiable kernel function whose support is 

[−1,1] and is symmetrical about 0, ℎ > 0 denote a bandwidth parameter. 

Define, 퐾 , (푣) = 퐾(푣|푝,ℎ) for any	푣	 ∈ 	 [−1,1]. Likewise define 퐾 , (푣) for a 

	푙 −vector. Let 푓  and	푓 , respectively denote the probability density functions 

of (푋,푍) and	(푌,푋,푍). Define 

퐹 (푦, 푥, 푧) = 푓 (푣,푥, 푧)푑푣
∞

 

Let the kernel estimators of 푓 ,푓  and 퐹  be as follows; 

푓 (푥, 푧) =
1

푛ℎ 퐾 , (푥 − 푋 )퐾 , (푧 − 푍 ) 
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푓 (푣,푥, 푧) =
1

푛ℎ 퐾 (푦 − 푌 )퐾 , (푥 − 푋 )퐾 , (푧 − 푍 ) 

and 

퐹 (푦, 푥, 푧) = 푓 (푣,푥, 푧)푑푣
∞

 

For each	푧 ∈ [0,1] , define the operators 훤  and 훤  on 퐿 [0,1]  by  

(훤 휑 )(푥) = 퐹 [휑 (푥),푥, 푧]푑푥
[ , ]

 

where 휑  is any function on 퐿 [0,1] . The function 푔 satisfies  

																																																							(훤 푔)(푥, 푧) = 푞	푓 (푥, 푧)																																									(2.7.2.1) 

where 푞 is an unknown constant satisfying	0 < 푞 < 1. The function 푔(∙, 푧) is 

defined if (2.7.2.1) is unique solution up to a set of 푥 values of Lebesgue 

measure 0 for the specified	푧. Define 훺 = {휑 ∈ 퐿 [0,1] :‖휑‖ ≤ 푀} for some 

constant	푀 < ∞. For each		푧 ∈ [0,1] , the estimator of 푔(∙, 푧) is any solution to 

the problem 

푔(∙, 푧) = arg	min
∈

훤 휑 (푥)− 푞푓 (푥, 푧) 푑푥 + 푎 휑 (푥) 푑푥
[ , ][ , ]

 

We define	훿 = ℎ + (푛ℎ ) , and we make the following assumptions 

Assumption 2.2.6  

(A1) (a) The function 푔 is identified 

         (b) ∫ 푔(푥, 푧) 푑푥 ≤ 푀[ , ]  for each 푧 ∈ [0,1]  and some constant 푀 < ∞ 
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(A2) 푓  has 	푟 > 0 continuous derivatives with respect to any combination of its 

       arguments. These derivatives are bounded in absolute value by	푀. 

(A3) As	푛 → ∞, 푎 → 0, 훿 → 0 and 훿 푎⁄ → 0 

(A4) The kernel function 퐾 is supported on [−1,1]	 and is continuously   

 differentiable and      

            Symmetrical about 0 

This leads to the following theorem proved by Masry and Fan (1997): 

Theorem 2.5 Let assumption 2.2.6 (A1-A4) hold, then for each		푧 ∈ [0,1] , 

lim
→∞

퐸 [푔(푥, 푧)− 푔(푥, 푧)] 푑푥
[ , ]

= 0 

 
2.7.3 Rate of Convergence  

As when 푋 and 푍 are scalars, the rate of convergence of 푔 in the multivariate 

model depends on the rate of convergence of the singular values of the Fréchet 

derivative of	훤 . Accordingly, let 훤  denote the Fréchet derivative of 푇  at 푔 and 

let, 푇∗  denote the adjoint of	푇 . 푇  and			푇∗ , respectively are the operators 

defined by  

																						 푇 휑 (푥) = 푓 [푔(푥, 푧), 푥, 푧]휑 (푥)푑푥
[ , ]

																																			(2.7.3.1) 
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and 

															 푇∗ 휑 (푥) = 푓 [푔(푥, 푧)푥, 푧]휑 (푥)푑푥
[ , ]

																																									(2.7.3.2) 

Assume that for each	푧 ∈ [0,1] , 푇∗  푇  is non-singular. Let 휆 , ,휑 : 푗 =

1,2, …  denote the Eigen values and Eigen vectors of 푇∗  푇  ordered so 

that	휆 ≥ 휆 ≥ ⋯ > 0. The Eigen vectors 휑  form a complete, orthonormal 

basis for	퐿 [0,1] . Thus for each	푧 ∈ 퐿 [0,1] , we can write 

																																																					푔(푥, 푧) = 푏 휑 (푥)
∞

																																							(2.7.3.3) 

where 

푏 = 푔(푥, 푧)휑 (푥)푑푥
[ , ]

 

 

Assumption 2.2.7 

  (A5)  (a) There are constants	훼 > 1, 훽 > 1 and	퐶 < ∞, such that   

  	훽 − 1
2 ≤ 훼 < 		2훽 − 1,  

             푗 ≤ 퐶 휆 , and 푏 ≤ 퐶 푗  uniformly in 푧 ∈ [0,1]  for all 푗 ≥ 1 

          (b) Moreover, 푟 ≥max{[푚(2훽 + 훼 − 1) − 푙] 2⁄ , 푟∗}, where 푟∗ is the largest 

 root of the equation 

4[(훼 + 1) (2훽 + 훼)⁄ ]푟 − 2[(푝 + 푙)(2훽 − 1) (2훽 + 훼) + 푝 + 1 − 푙⁄ ]푟 − (푝 + 1)푙

= 0 
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(A6)  There is a finite constant 퐿 > 0 such that  

‖훤 (푔 )− 훤 (푔 ) − 훤푔 푧(푔 − 푔 )‖ ≤ 0.5퐿‖푔 − 푔 ‖  

       for any 푔 ,푔 ∈ 퐿 [0,1] uniformly in 푧 ∈ [0,1]  and  

푏
휆 <

1
퐿 

         uniformly in 푧 ∈ [0,1]  

(A7) The tuning parameters 	ℎ and 푎  satisfy ℎ = 퐶 푛 ( )⁄  and      

푎 = 퐶 푛 ( )⁄ , where 휏 = 2푟 (2푟 + 푙)⁄  and 퐶  and 퐶  are positive finite 

constraints. 

Let ℋ = ℋ (푀,퐶 ,훼,훽, 퐿, 푟,푝, 푙) be the set of distributions of (푌,푋,푍) that satisfy 

Assumption 2.2.6 (A1 and A2), Assumption 2.2.7 (A5 and A6) with fixed values of 

푀,퐶 ,훼,훽, 퐿, 푟, 푝 and 푙 

Theorem 2.6   Let Assumptions 2.2.6 (A1, A2, A4), and Assumption (2.2.7) hold. 

Then for each 푧 ∈ [0,1]   

푙푖푚
→

푙푖푚푠푢푝
→

푠푢푝
∈ℋ

푷 [푔(푥, 푧) − 푔(푥, 푧)] 푑푥 > 퐷 ( )⁄

[ , ]

= 0 		(2.7.3.4) 

If in addition 

																				[푝(2훽 + 훼 − 1) − 푙] 2⁄ ≥ 푟∗																																																																						(2.7.3.5) 

then, for each 푧 ∈ [0,1]  

liminf
→∞

sup
∈ℋ

푷 [푔(푥, 푧) − 푔(푥, 푧)] 푑푥 > 퐷 ( ) ( )⁄

[ , ]

	> 0											 (2.7.3.6) 
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If	푙 = 0, then (2.7.3.5) simplify to			훼 ≥ 1 + 푟∗ − 2훽. The rate of convergence in 

Theorem 2.5 is the same as that in Theorem 2.6. If 푝 = 1 and	푙 = 0, Theorem 

2.5 shows that increasing 푙 decreases the rate of convergence of 푔 for any 

fixed	푟. Assumption 2.2.7 (A 5) implies that as 푙 increases, 	푟 must also increase 

to maintain the rate of convergence		푛 ( ) ( )⁄ . This is a form of the curse 

of dimensionality that is associated with the endogenous explanatory variable	푋. 
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CHAPTER THREE  

3.0 REGRESSION QUANTILES 

3.1 Introduction to regression quantiles 

When data means and variance are non-constant, typically skewed or contains 

some outliers, it is understood that the observations come from different 

distributions over time. This creates difficulties in empirical modelling. Standard 

asymptotic distribution theory often does not apply to regression involving 

variables of this nature since inferences may be misleading. In such data, 

median regression a special case of quantile regression is more robust than the 

mean regression. More of interest is the case where the data pattern shows 

heteroscedasticity and asymmetries. Estimation of linear models for conditional 

quantiles function has been considered by Koenker and Bassett (1978). That is, 

for any 휃 − 푡ℎ quantile of a scalar random variable, 푌 can be viewed as a 

solution to the problem  

   																																푎푟푔푚푖푛 ∈ℜ퐸{휌 (푌 − 푎)|푋 = 푥} = 푞 (푥)																												(3.1.0.1)                                               

where 휌 (∙) is the “check” function, and  휌 (푢) = 휃|푢| + (1 − 휃)|푢| .  

For fixed	푋, a nonparametric estimator is defined by setting the value 푎 in 

(3.1.0.1) that minimize  

 



62 
 

    																																				∑ 휌 (푌 − 푎) 퐾 				 																																																		(3.1.0.2)                                       

where 퐾(∙) is the kernel function and	ℎ is the bandwidth. 휌 (∙)  is the loss 

function given by  

휌 (푢) = 휃퐼{ }(푢).푢 + (휃 − 1)퐼{ }(푢).푢 

Similarly, in a regression setting we might hypothesize a linear relationship 

between the conditional quantiles of 푌 and a vector of covariates	푥 ∈ ℜ , that is 

퐹 (휃|푥) = 푥 훽 

we may define the 휃푡ℎ regression quantiles of the sample {(푦 , 푥 )}  as solution 

to 

argmin
∈ℜ

휌 (푦 − 푥 푏) 

Since our motivation is a convenient method of detecting conditional 

heteroscedasticity, we assume that  {푌 ,푋 } ∞
∞  is a stationary sequence as 

described in Chapter 2. Denote	퐹(푌|푋) the conditional distribution of 푌 given 

푋 = 푥 and  푋 = (푋 , … ,푋 )′ be the associated covariate vector in ℜ  with 

푑 ≥ 1  and might be a function of exogenous (covariate) variables or some 

lagged (endogenous) variables or a function of time	푡. Let 푋( ) ≤ 푋( ) ≤ ⋯ ≤ 푋( )  

denote the order statistics of  {푋 }  . Define the inverse of 퐹(푥) as  

                      																								퐹 (휃) = 푖푛푓{푥휖ℜ;퐹(푥) ≥ 휃}																																		(3.1.0.3)                                            

where ℜ is the real line, 푖푛푓 denotes the smallest real number 푥, satisfying 

퐹(푥) ≥ 휃 . So we define the quantile estimate as 
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																								푞 (푥) = 푖푛푓{푦 ∈ ℜ:퐹(푦|푥) ≥ 휃} = 퐹 (휃|푥)																																		(3.1.0.4)                                             

We remark that 푞 (푥) always exists because 퐹(푦|푥) is between zero and one 

and monotone to 푦 and involves only one bandwidth, so it makes practical 

implementation more appealing. 

 

3.1.1 The asymptotic properties of the conditional quantile estimator 

Define the probability distribution function of 푋  at 푥  as	푔, estimated by  

																															푔(푥 ) =
1
푛ℎ 퐾 (푥 − 푋 ) 																																																					(3.1.1.1) 

As pointed out in Parzen (1962) and Mwita (2003), the joint probability density 

function  푓(푦, 푥) of (푌 ,푋 ) at (푦,푥) will be estimated by  

																													푓(푦,푥) =
1
푛ℎ 휑

푦 − 푌
ℎ∗ 퐾 (푥 − 푋 ) 																																					(3.1.1.2)	 

Where the function 휑 is the kernel and ℎ∗ is the bandwidth for 푌  at point		푦. The 

conditional probability density function  푓 (푦) of 푌  given that 푋 = 푥 will be 

estimated by  

																																															푓 (푦) =
푓(푦, 푥)
푔(푥) 																																																															(3.1.1.3) 

The conditional cumulative density function 퐹 (푦) of 푌  given 푋 = 푥 at distinct 

points 푦 can be obtained by the Collomb (1980) empirical estimator, 

퐹 (푦) =
∑ 퐾 (푥 − 푋 )퐼{ }

∑ 퐾 (푥 − 푋 )  
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																																															=
푟̂ (푦)
푔(푥) 																																																																																	(3.1.1.4) 

The conditional estimator of 푞 (푥) is then obtained by inverting (3.1.1.4) at 휃 to 

obtain (3.1.0.4). Because  0 ≤ 퐹 (푦) ≤ 1 and is strictly monotone in	푦, 푞 (푥) 

exist and is unique. To show that our estimator 푞 (푥) maintains the 

aforementioned advantages of			퐹(∙ |푥), we introduce the following additional 

conditions, to Condition 2.2.1 

Condition 3.1.1  

(A1) Assume that 퐹(푦|푥) has conditional density	푓(푦|푥), which is continuous at 	푥 

(A2) 푓(푞 (푥)|푥) > 0 

Condition 3.1.2 

With ℎ and |ℎ| denoting the bandwidth and its determinant respectively the 

Euclidean norm, of the diagonal bandwidth matrix	ℎ = 푑푖푎푔 ℎ , 푗 = 1, … , 푑: 

(B1)   ℎ > 0, ℎ → 0 and 푛ℎ → ∞ for 푛 → ∞ 

(B2)   → ∞,푎푠	푛 → ∞ 

Condition 3.1.3 

(C1) The process {(푌 ,푋 )} is 훼 mixing with coefficient satisfying	훼(푠) =

											표 푠 ( ) , for some 	훿 > 0 

Condition 3.1.4 

(D1) (푌 ,푋 ) has joint density 푓(푥, 푦).Then the density 푔(푥) of 	푋  exists too. 
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(D2) For fixed	(푦, 푥), 퐹 (푦) ∈ (0,1) and 푔(푥) > 0 are continuous in the 

neighborhood of 	푥 where we want to estimate the quantile function. Then the 

conditional  density		퐹 (푦)  exists at		푥. 

In order to establish the order of the bias and the variability of the estimator, 

let	훺 = ∑ 훾 , where		훾 = 퐾 (푥 − 푋 ) 퐼{ } − 퐹 (푦) . Then we have the 

following lemma 

Lemma 3.1 Under regulatory conditions 2.2.1, 3.1.1, 3.1.2 and 3.1.3  

										푉푎푟[훺] =
1
푛ℎ 푉

(푦)푔 (푥 ) + 표
1
푛ℎ 																																																																	(3.1.1.5) 

where   푉 (푦) =
( )

퐹 (푦)− 퐹 (푦) ∫퐾 (푢)푑푢 

Proof of Lemma 3.1 

Since 훺 = (훾 |푋 ) then 퐸[훺] = 0 and   

푣푎푟[훺] =
1

(푛ℎ) 푣푎푟 훾  

=
1

(푛ℎ) 푣푎푟[훾 ] + 푐표푣[훾 ,훾 ,]
,

 

=
1

(푛ℎ) 푛퐸[훾 ] + 2 (푛 − 푡 − 1)푐표푣[훾 , 훾 ]  

														=
1
푛ℎ 퐸[훾 ] + 2

1
푛ℎ 1−

푡 − 1
푛 푐표푣(훾 , 훾 )												 																										(3.1.16) 

where the second term on the right hand side is of negligible magnitude as 

pointed out and proved in  Mwita (2003). 
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 By stationarity,  

퐸[훾 ] = 퐸 퐾
푥 − 푋
ℎ 퐹 (푦)− 퐹 (푦)  

and using Conditions 3.1.4 and the Taylor expansion of 퐹 (푦) about 퐹 (푦) and 

the resulting terms involving the density about 	푔(푥), we get 

																																																				퐸[훾 ] = (ℎ)푉 (푦)푔 (푥) + 표(ℎ)																															(3.1.1.7) 

Lemma 3.2 Under Conditions 3.1.3 and 3.1.4  

																																																									푔(푥)→ 푔(푥)																																																													(3.1.1.8) 

Proof of lemma 3.2 

The bias of the density estimator is obtained as 

퐸[푔(푥)]− 푔(푥) =
|ℎ|

2 푢 ∇ 푔(푥)푢퐾(푢)푑푢 + 표(|ℎ| ) 

and the variance is, 

푣푎푟[푔(푥)] =
1
푛ℎ 푔

(푥) 퐾 (푢)푑푢 + 표
1
푛ℎ 

The mean squared error of 푔(푥 ) then becomes of the following order 

푀푆퐸 푔(푥 ) = 푂(‖ℎ‖ ) + 푂
1
푛ℎ  

which goes to zero as 푛 increases. Hence   푔(푥)→ 푔(푥)                                ∎                                                                                                            

Lemma 3.3 Using the same conditions as in Lemma 3.1 and 3.2, we have 

																																							푟̂ (푦)→ 푟 (푦)																																																																														(3.1.1.9)	 

Proof of Lemma 3.3 

To obtain the bias 



67 
 

퐸[푟̂ (푦)] − 퐹 (푦)푔(푥)

=
1
2

|ℎ| 퐹 (푦) 푢 ∇ 푔(푥)푢퐾(푢)푑푢	

+ |ℎ| ∇퐹 (푦) 푢∇푔(푥) 푢퐾(푢)푑푢 

+ 	
1
2푔

(푥)|ℎ| 푢 ∇ 퐹 (푦)푢퐾(푢)푑푢 + 표(|ℎ| ) 

and using the same arguments as in the proof of Lemma 3.1 we have the 

variance as 

푣푎푟[푟̂ (푦)] =
1
푛ℎ 퐹

(푦)푔(푥) 퐾 (푢)푑푢 + 표
1
푛ℎ  

The mean squared error for 푟̂ (푦) is of order 푂 |ℎ| +  and by Condition 

3.1.2, the mean squared error approaches zero as 푛 increases, hence 

                                                       		푟 (푦)→ 푟 (푦).                                       ∎ 

By Slutsky’s theorem, it can be proved that    ̂ ( )
( )

= 퐹 (푦)  for |ℎ| + → 0 

as	푛 → ∞. Hence,  퐹 (푦) is a consistent estimator of 퐹 (푦) such that			퐹 (푦)

→퐹 (푦). The variance and bias for 퐹 (푦) is given in the following lemma 

Lemma 3.4 Suppose the conditions in Lemma 3.1 holds, then 

퐸 퐹 (푦)− 퐹 (푦) = 퐵 (푦) + 표(|ℎ| ) 

where   

퐵 (푦) =
|ℎ|
푔(푥) ∇퐹 (푦) 푢∇푔(푥) 푢퐾(푢)푑푢 +

1
2푔

(푥 ) 푢 ∇ 퐹 (푦)푢퐾(푢)푑푢  

and the variance is given by 
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																								푣푎푟 퐹 (푦) = (푛|ℎ|) 푉 (푦) + 표((푛|ℎ|) )																																				(3.1.2.0) 

Proof of Lemma 3.4 

Because the numerator and the denominator of (3.1.1.4) are stochastic, we can 

linearize the estimator as 

퐹 (푦) = 퐹 (푦) +
푟̂ (푦)− 퐹 (푦)푔(푥)

푔(푥) +
1

푔(푥) 퐹 (푦)− 퐹 (푦) 푔(푥)− 푔(푥) 	(3.1.2.1) 

The consistency of 푟̂ (푦) and 푔(푥) as shown in Lemma 3.1 implies that for 

large	푛,	ℎ → 0, we have 퐹 (푦) − 퐹 (푦) = 표 (1) and because	푔(푥)− 푔(푥) =

푂 (|ℎ| ), the product of the two quantities is of smaller order in probability. Thus 

using the proof of Lemma 3.2 and Lemma 3.3 in 

퐸 퐹 (푦) − 퐹 (푦) =
퐸[푟̂ (푦)]− 퐹 (푦)퐸[푔(푥)]

푔(푥) + 표 (|ℎ| ) 

results to Lemma 3.4 

Lemma 3.5 Assume conditions 2.1.2, 3.1.1 and 3.1.2, then for	휔 → 0, we have 

퐹 (푦 + 훾 ) − 퐹 (푦) = 휔 푓 (푦) + 표 (휔 ) + 표
1
푛|ℎ|  

Proof of lemma 3.5 

Expressing  

	퐹 (푦 + 휔 ) − 퐹 (푦) =
1
푛|ℎ|

∑ 퐾(푥 − 푋 : ℎ) 1{ } − 1{ }

푔(푥) 														(3.1.2.2) 

Using (3.1.1.9) we can simplify (3.1.2.0) using the same arguments of 

expectation as in Lemma 3.4. Then we expand the resulting 퐹 (푦 + 휔 ) and 

other terms involving 휔  about their corresponding function of 푦 we end up with 
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퐸 퐹 (푦 + 휔 ) − 퐹 (푦) = 휔 푓 (푦) + 표(휔 ‖ℎ‖) 

Similarly, the variance of (3.1.2.2) becomes 

푣푎푟 퐹 (푦 + 훾 ) − 퐹 (푦) = 푂 훾
1
푛|ℎ|  

The mean squared error goes to zero as 푛 → ∞ hence (3.1.2.2) holds.             ∎ 

Lemma 3.6 Let 푈 be a real random variable with absolutely continuous 

distribution 퐹  and 휃-quantile, 푞 = 퐹 (휃) 

a) 푃(퐻 (푈) ≤ 휇) = 푃 푞 − ≤ 푈 ≤ 푞 + , 푓표푟	푎푙푙		0 ≤ 휇 < ∞ 

b) Let 퐻  be the 휃-quantile of	퐻 (푈). Then 훺 =    has zero 휃-quantile and 

unit scale 

Proof of Lemma 3.6 

(a) By definition of 퐻 (푈) = 퐻 푈,푞 : 

푃(퐻 (푈) ≤ 휇) = 푃(푈 > 푞 ,휃(푈 − 푞 ) ≤ 휇) + 푃(푈 ≤ 푞 , (1 − 휃)(푞 − 푈) ≤ 휇) 

= 푃 푞 < 푈 ≤ 푞 +
휇
휃 + 푃 푞 −

휇
1 − 휃 ≤ 푈 ≤ 푞  

= 푃 푞 −
휇

1− 휃 ≤ 푈 ≤ 푞 +
휇
휃 . 

(b) 푃(훺 ≤ 0) = (푈 − 푞 ≤ 0) = 휃, that is the 휃-quantile of 훺 is 0 and therefore, 

using (a) we have 

푃(퐻 (훺) ≤ 1) = 푃 −
1
휃 ≤ 훺 ≤

1
휃  

= 푃 푞 −
퐻

1 − 휃 ≤ 푈 ≤ 푞 +
퐻
휃  

                                              = 푃(퐻 (푈) ≤ 퐻 ) = 휃															∎					                                           
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Theorem 3.1 Suppose Conditions 2.2.1 hold, then as	푛 → ∞, 

																																																푞 (푥)→ 푞 (푥)																																																																				(3.1.2.3) 

 In addition, if Conditions 3.1.1 are satisfied then       

        					√푛ℎ[푞 (푥)− 푞 (푥)− 퐵 (푥) + 표 (ℎ )] →푁 0,휎 (푥) 																								(3.1.2.4) 

where the bias and variance are given respectively by 퐵 (푥) = − ( ( )| )
( ( )| )

   and 

휎 (푥) =
휎 (푞 (푥)|푥)
푓 (푞 (푥)|푥) =

푣 휃(1 − 휃)
푓 (푞 (푥)|푥)푔 푞 (푥)

 

As an application of Theorem 3.1, the asymptotic mean squared error (AMSE) 

of 푞 (푥) is given by 

		퐴푀푆퐸 푞 (푥) =
ℎ
4
휇 퐹( )(푞 (푥)|푥)
푓(푞 (푥)|푥) +

1
푛ℎ

푣 휃[1− 휃]
푓 (푞 (푥)|푥)푔 푞 (푥)

													(3.1.2.5) 

The consistent estimate for 휎 (푥) is  

																																	휎 (푥) =
푣 휃[1− 휃]

푓 (푞 (푥)|푥)푔 푞 (푥)
																																																		(3.1.2.6) 

Proof of Theorem 3.1 

First we prove (3.1.2.3) from Lemmas 3.1 and 3.2. We have for all 푥 ∈ ℜ  

and	푦,	퐹 (푦) → 퐹 (푦) in probability. Because 퐹 (푦) is a distribution function it 

follows from Glivenko-Cantelli theorem that for generalized empirical processes 

based on strong mixing sequences that 

																											sup
∈ℜ

퐹 (푦)− 퐹 (푦) → 0		 																푖푛	푝푟표푏푎푏푖푙푖푡푦																							(3.1.2.7) 
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The uniqueness assumption of 푞 (푥) implies that, for any fixed		푥 ∈ ℜ , there 

exists a 휓 > 0 and 훿(휓) > 0 such that 

훿 = 훿(휓) = 푚푖푛{휃 − 퐹 (푞 (푥)− 휓),퐹 (푞 (푥) + 휓) − 휃} > 0 

This implies that 

푃{|푞 (푥)− 푞 (푥)| > 휓} ≤ 푃 퐹 푞 (푥) − 퐹 푞 (푥) > 훿  

≤ 푃 퐹 푞 (푥) − 퐹 푞 (푥) > 훿 −
1
푛  

																																					≤ 푃 sup 퐹 (푦)− 퐹 (푦) > 훿 																																															(3.1.2.8) 

for arbitrary 훿 < 훿 and 푛 large enough. Here, we used 퐹 푞 (푥) = 휃 and	휃 ≤

퐹 푞 (푥) ≤ 휃 + .  (3.1.2.8) tends to zero by (3.1.2.7) hence, (3.1.2.3) holds 

true. To prove (3.1.2.4), let 푏 = − ( )
( )

 and	푣 = ( )
( )

.  For any 푤 

푞 (푤) = 푃
푞 (푥 ) − 푞 (푥 )− 푏

푣 ≤ 푤  

= 푃(푞 (푞) ≤ 푞 (푞) + 푏 + 푣푤) 

As 퐹 (푦) is increasing, but not necessarily strictly, we have 

푃 퐹 푞 (푥) < 퐹 (푞 (푥) + 푏 푣 + 푤) ≤ 푞 (푤) 

≤ 푃 퐹 푞 (푥) ≤ 퐹 (푞 (푥) + 푏 푣 + 푤)  

By the same argument as in (3.1.2.8) we may replace 퐹 푞 (푥)  by 퐹 푞 (푥)  up 

to an error of  at most. Neglecting the  term which is asymptotically negligible 

anyhow, we get 
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푞 (푤) ≈ 푃 퐹 푞 (푥) ≤ 퐹 (푞 (푥) + 푏 + 푣푤)  

																													≈ 푃 −푓 푞 (푥) .훿 ≤ 퐹 푞 (푥) − 퐹 푞 (푥) 																		(3.1.2.9) 

with 훿 = 푏 + 푣푤 where we have used lemma 4.5 and neglected the 표(훿 ) and 

표 ( ) .  Using the asymptotic normality 

										√푛ℎ 퐹 (푦)− 퐹 (푦)− 퐵 (푦) + 표 (ℎ ) →푁 0,푣 (푦) 																							(3.1.3.0) 

 with 푦 = 푞 (푥), we get 

푞 (푤)~푃 푛ℎ( ) 퐹 (푦 ) − 퐹 (푦 ) − 퐵 (푦 )
푉(푦 ) 	≥

−푓 (푦 )훿 − 퐵 (푦 )
푉(푦 ) 푛ℎ( )  

~훷 푛ℎ( )
푓 (푦 ). (푏 + 푣푤) + 퐵 (푦 )

푉(푦 )  

= 훷(푤) 

by our choice of 푏  and 푣. This proves the theorem.                                      ∎ 

These results can be used to construct confidence interval for the estimators as 

well as other relevant inferences. 

 

3.2 Confidence Intervals for conditional quantiles 

Asymptotic distribution of sample quantiles which make statistical inference 

possible is given by 

																														√푛푓 푞 (푥) 푞 (푥)− 푞 (푥) →퐵(푢)																																									(3.2.0.1) 

where, 퐵(푢), 0 < 푢 < 1, is Brownian Bridge, zero mean Gaussian process with 

covariance 
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퐸[퐵(푠)퐵(푡)] = 푚푖푛(푠, 푡)− 푠푡 

Confidence intervals for a parameter 푞 (푥) can be formed from the asymptotic 

distribution of 푞 (푥) as  

																																						√푛 푞 (푥)− 푞 (푥) →퐵(푢) 푓푞 (푥)⁄ 																																			(3.2.0.2) 

This formulae has a severe disadvantage, it requires estimation of 푓 푞 (푥)  

from the values of sample quantile function	푄 (푢), similarly for	푄 | (푢). One 

can obtain the confidence interval for 푞 (푥) using facts such as 

																																											(√푛 퐹 푞 (푥) − 푢)→퐵(푢)																																											(3.2.0.3) 

one can find functions 푐 (푢) and 푐 (푢) such that with probability greater than 훼, 

for all 푢, 

푢 − 푐 (푢) √푛⁄ < 퐹 푄(푢) < 푢 + 푐 (푢) √푛⁄  

															푄 푢 − 푐 (푢) √푛⁄ < 푄(푢) < 푄 푢 + 푐 (푢) √푛⁄ 																						(3.2.0.4) 

 

3.3 Smoothing parameter choice under quantiles 

The smoothing parameter selectors in section 2.3 can be adapted to quantile 

regression estimation. The first modification concerns		푙표푔(휎 ) in (2.3.0.3). 

Since the quantile estimator (3.1.0.2) falls into the class of 푀-estimators we can 

proceed and interpret the 휌  function as “− log 푙푖푘푒푙푖ℎ표표푑 = 휌 ”, so that the 

criterion like 퐴퐼퐶 is modified by using ∑ 휌 푦 − 푞 (푥 )  instead of	휎.  
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The second modification concerns the smoother matrix	푆 . Estimator (3.1.0.2) 

does not lead to a linear estimator	푦 = (푆 )푦 because it is carried out by 

iteratively reweighted least squares. The smoother matrix(푆 ) can be 

approximated by the implied smoother matrix from the last iteration of the 

iteratively reweighted least squares fit of the model. With these modifications, 

the suitable smoothing parameter for the nonparametric quantile regression is 

choose the bandwidth to the minimiser of  

    																																2푙표푔 ∑ 휌 푦 − 푞 (푥 ) + 휓(푆 )																																(3.3.0.1)                                           

where,  휓(∙) is  one of the  penalizing  function and 푆  is the appropriate 

smoother matrix. 
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CHAPTER FOUR  

4.0 MODELING EXTREME VALUES 
 

4.1 Extreme value theory 

Modeling of extreme events is the central issue in extreme value theory and the 

main purpose of the theory is to provide asymptotic models with which we can 

model the tails of a distribution. Energy related utilities, exhibit certain risk 

characteristics that are different from traditional financial assets like stocks and 

bonds. Further supply and demand changes of these utilities are translated 

immediately into price changes of other related complements. Such turbulence 

in the utility market characterized by the substantial increase in market volatility 

has generated discussions on the appropriate measures of market risks and 

margin settings in utility related institutions. Several studies exist that compare 

the forecasts performances of different risk models among others, Kuester et.al 

(2006), and Manganelli and Engle (2001). But nonparametric quantile 

regression as a tool of risk estimation is rarely considered. Chen and Tang 

(2005), investigates nonparametric risk estimation when no regressors are 

present. Taylor (2008) combines double kernel quantile regression with 

exponential smoothing in the time domain to study risks. Since data sparseness 

is more severe in extreme quantiles, we embark upon refining nonparametric 

quantile regression methods with extreme value theory to model extreme 

quantiles accurately. We are motivated by the fact that it is prudent for risk 
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managers to focus on the conditional distributions of profit and loss, when extra 

ordinary or rare events occur. One analytical tool of assessing riskiness of 

trading activities which is commonly used in practice by institutions and asset 

managers for minimization of risk is	푉푎푙푢푒	푎푡	푅푖푠푘 (푉푎푅). 

 

4.2 Value at Risk 

In financial planning, Value at Risk (푉푎푅) can be defined as the maximal loss of 

a financial position during a given period for a given probability. For a regulatory 

committee, 푉푎푅 is the minimal loss which may occur under extra ordinary 

market circumstances. The main advantage of 푉푎푅 over other risk measures is 

its inherent theoretical simplicity. The expected loss given that the loss is at 

least as large as some given quantile of the loss distribution, herewith 푉푎푅 is 

the Expected shortfall		퐸푆. According to Artzener et al. (1999), Expected 

shortfall is a coherent risk measure which posses the properties of 

homogeneighty;  increasing the size of a portfolio by a factor should scale its 

risk measure by some factor, property of monotonicity; a portfolio must have 

greater risk if it has systematic lower values than another, property of 

translation variance also referred  to as risk free; adding some amount of cash 

to a portfolio should reduce the risk by the same amount and the property of 

sub additivity; merging portfolio cannot increase risk. 

There are two approaches in 푉푎푅 calculation. 
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(i) The unconditional approach which uses the historical returns of the 

instruments to 푉푎푅 calculation and  

(ii) The conditional approach which uses historical data and explanatory 

variables to calculate	푉푎푅. The explanatory variables may include the 

macroeconomic variables of an economy and the accounting 

variables of the companies involved.   

Since one bad day in the market makes the probability of the next day 

somehow worse off, one would expect 푉푎푅 to increase as the past returns 

become very negative, as a result  푉푎푅 depend on the past returns in some 

way.  

Conditional Value at risk herewith	 푉푎푅( )  can be modeled parametrically and 

also nonparametrically. Parametric models for 	 푉푎푅( )   can be more efficient if 

the underlying functions are correctly specified. Engle and Manganelli (2004) 

applies The Generalized Autoregressive Conditional Heteroscedastic 퐺퐴푅퐶퐻 

type parametric model based on regression quantiles to study	 푉푎푅( ) . This 

volatility based approach to estimating conditional quantiles has two draw-

backs. On one hand, the distribution of innovations {휀 } has to be specified like 

as standard normal or as a heavy tailed distribution like the 푡 distribution. 

Secondly volatility based estimates of 푉푎푅 tacitly assumes that the extreme 

negative unit rates of change (returns) shows the same kind of random pattern 



78 
 

as the majority of typical unit  rates of change which mainly determine the 

volatility estimate. 

However a 	 푉푎푅( )  misspecification may cause serious bias and model 

constraints and may distort the underlying distribution.  To this effect, 

nonparametric modeling becomes more appealing in the sense that little or no 

restrictive prior information on functional form is needed and it may further 

provide a useful insight for further parametric fitting. 

 

4.3 Nonparametric estimation of Value at Risk  

Let us assume that the observed data {(푋 , 푟 ); 1 ≤ 푡 ≤ 푛},푋 ∈ ℜ  are available 

and they are observed from a stationary time series model. Let 푟  be the loss or 

risk variable which can be the negative logarithm of return in finance or a unit 

rate of change in econometrics demand modeling. Let 푋 	 be the lag variables 

of	푟 . 푋 	, may be a vector which may include both the lag variables and the 

economic (exogenous) variables. We consider the case when 푋  is a scalar 

(푑 = 1). The methodology also applies when		푑 ≥ 1. 

Define the nonparametric estimation of the conditional value at risk 	 푉푎푅( )  as 

푞 (푥)   the solution of  

																															푃(푟 ≥ 푞 (푥)|푋 = 푥) = 푍(푞 (푥)|푥) = 휃																																			(4.3.0.1) 

We can express	푞 (푥) = 푍 (휃|푥) , where 푍(푟|푥) is the conditional survival 

function of  푟  given 푋 = 푥 that is 푍(푟|푥) = 1 − 퐹(푟|푥) and 퐹(푟|푥) is the 
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conditional cumulative distribution function. The nonparametric estimation of the 

Expected Shortfall 퐸푆 is defined as 

γ (푥) = 퐸[푟 |푟 ≥ 푞 (푥),푋 = 푥]																		 

It can be shown that  

																															훾 (푥) = 푟	푓(푟|푥)푑푟 휃					⁄
( )

																																																					(4.3.0.2) 

where, 푓(푟|푥) is the conditional probability density function of 푟  given 	푋 = 푥. 

To estimate 훾 (푥) we have 

																																															훾 (푥) = 푟	푓(푟|푥)푑푟 휃⁄
( )

																																									(4.3.0.3) 

Where,	푞 (푥) is a nonparametric estimation of 푞 (푥) and 푓(푟|푥) is a 

nonparametric estimation of	푓(푟|푥), but the bandwidth of	푞 (푥) and 푓(푟|푥) are 

not necessary the same. The question is how to provide a better estimate of 

푓(푟|푥) and	푞 (푥). Scaillet (2005) used the Nadaraya-Watson type double kernel 

method to estimate 푓(푟|푥) and then estimated 푞 (푥) by inverting the estimated 

conditional survival function, denoted by 푞 (푥) and finally estimated 훾 (푥) by 

plugging 푓(푟|푥) and  푞 (푥) into (4.3.0.2).  But it has been shown that the 

Nadaraya-Watson kernel type procedures have serious drawbacks. The 

asymptotic bias involves the design density so that they cannot be adaptive 

thus they require boundary modification. In particular boundary modification 

effects might cause a serious problem for estimating 푞 (푥) since it is only 
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concerned with the tail probability. Despite this Nadaraya-Watson has the 

properties of positivity and monotonicity as shown in section 2.2.2, which are 

advantageous if the method of inverting conditional distribution estimator. To 

overcome these difficulties we apply the Weighted Nadaraya-Watson estimator 

based on the empirical likelihood principle as discussed in chapter 2 which 

accommodate all nice properties of monotonicity, continuity, differentiability and 

lying between zero and one and the attractive asymptotic properties of 

mathematical efficiency and design adaptation. 

We combine the properties of Weighted Nadaraya-Watson estimate and the 

Double Kernel method of Yu and Jones (1998) and we refer to the estimator as 

the New Weighted Estimator 푁푊퐸 given as 

																							푓 (푟|푥) = 푃 (푥, ℎ)푟∗(푟)																																																														(4.3.0.4) 

where 푃 (푥, ℎ) is given in section 2.2.3,	푟∗(푟) = 퐾 (푟 − 푟 ), is an initial estimate 

of 푓(푟|푥) smoothing in the 푟 direction. Therefore,  

										퐹 (푟|푥) = 푓 (푦|푥)푑푦 = 푃 (푥, ℎ)퐺 (푟 − 푟 )				 																						(4.3.0.5) 

퐺 (푢) = 퐺(푢|ℎ ) is the distribution function of 퐾(∙)  of which for any symmetric 

density function 퐾(∙), 

                               퐸 퐾 (푟 − 푟 )|푋 = 푥  

										= 푓(푟|푥) +
ℎ
2 휇 (퐾)푓 (푟|푥) + 표(ℎ ) ≈ 푓(푟|푥)			푎푠			ℎ → 0																(4.3.0.6) 
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where		휇 (퐾) = ∫ 푢 퐾(푢)푑푢, 푓 (푟|푥) = 푓(푟|푥) and ≈ denotes an 

approximation ignoring the higher terms.  

We show that New Weighted Estimator enjoy the same convergence rates as 

the Weighted Nadaraya-Watson estimator at both the boundary and the interior 

points. 퐹 (푟|푥), is a monotone cumulative distribution function where,

 	0 ≤ 퐹 (푟|푥) ≤ 1,			퐹 (−∞|푥) = 0 and	퐹 (∞|푥) = 1.    

Also 퐹 (푟|푥) is continuous and differentiable in		푟. Plugging in 	푞 (푥)  and 

푓 (푟|푥) into (4.3.0.2) we obtain the nonparametric estimator of 훾 (푥) as 

훾 (푥) = 휃 푟	푓 (푟|푥)푑푟
	 ( )

= 휃 푃 (푥,ℎ) 푟
	 ( )

퐾 (푟 − 푟 )푑푟 

= 휃 푃 (푥, ℎ) 푟 퐺̅ 	푞 (푥)− 푟 + ℎ 퐺 , 	푞 (푥)− 푟 					 

where 

퐺̅(푢) = 1 − 퐺(푢), 		퐺 , (푢) = 퐺 (푢|ℎ ), 

  and  

퐺 (푢) = 푣	퐾(푣)푑푣 

 

4.3.1 Distribution theory 

Let 훼(퐾) = ∫ 푢퐾(푢)퐺̅(푢)푑푢  and			휇 (푃) = ∫ 푢 푃(푢)푑푢, also for any	푗 ≥ 0, 

write 



82 
 

푙 (푢|푣) = 퐸 푟 퐼(푟 ≥ 푢)|푋 = 푣 = ∫ 푟 푓(푟|푣)푑푟,  

 푙 , (푢|푣) =
,

푙 (푢|푣) 

and 

푙 , (푞 (푥)|푥) = 푙 , (푢|푣)
푢 = 푞 (푥),푣 = 푥

. 

Clearly, 

푙 (푢|푣) = 푍(푢|푣)  and 	푙 , (푢|푣) = − 푢 푓 (푢|푣) + 푗푢 푓(푢|푣) . 

We now list the following Assumptions. 

Assumption 4.3.1  

(A1) For fixed 푟 and	푥, 	0 ≤ 퐹(푟|푥) < 1, 	푔(푥) > 0. The marginal density of 푋  is 

continuous  at 푥 and 퐹(푟|푥) has continous second order derivative with respect 

to both 푥 and  푟 

(A2) The kernels 퐾(∙) and 푃(∙) are symmetric bounded and compactly supported  

       Density 

(A3)	ℎ → 0, and	푛ℎ → ∞, and ℎ → 0 and 푛ℎ → ∞ as 푛 → ∞    

          If 훼(푡) decays geometrically then we have condition (A4). 

(A4) Let 푔 , (∙,∙) be the joint density of 푋  and 푋  for 푡 ≥ 2. Assume that 

      푔 , (푢,푣) − 푔(푢)푔(푣) ≤ 퐶 < ∞, for all 푢 and	푣. And  

(A5) The process		{(푋 , 푟 )} is stationary 훼 − 푚푖푥푖푛푔 with the mixing coefficient 

 satisfying   훼(푡) = 푂(푡 ) 
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(A6)   푛ℎ → ∞. This is satisfied by the bandwidth ℎ = 푛  if 	휔 >  

(A7)   ℎ = 표(ℎ). This means that the initial step bandwidth should be chosen as 

 small as possible so that the bias from the initial step can be ignored 

Assumption 4.3.2 

(B1) Assume that 퐸(|푟 | |푋 = 푢) ≤ 퐶 < ∞ for some	휔 > 2, in the neighborhood 

 of	푥. 

(B2) Assume that 푔 , (푟 , 푟 |푥 ,푥 ) ≤ 퐶 < ∞ for all	푡 ≥ 2, where 푔 , (푟 , 푟 |푥 ,푥 ) 

 is the Conditional density of 푟  and 푟  given	푋 = 푥 , and	푋 = 푥 . This 

 implies that the higher the moments involved, the faster the decaying rate 

 of 훼(∙) 

(B3) The mixing coefficient of the 훼 − 푚푖푥푖푛푔 process (푋 , 푟 ) satisfies  

        ∑ 푡 훼 (푡) < ∞ for some 푎 > , where 휔 is given in assumption 

 (B1) 

(B4) Assume that there exists a sequence of integers 푧 > 0 such that	푧 → ∞,   

												푧 = 	표 (푛ℎ)  and 훼(푧 ) → 0 as 푛 → ∞ 

(B5) There exists 휔∗ > 휔 such that 퐸 |푟 | ∗ 푋 = 푢 ≤ 퐶 < ∞ in a neighborhood 

 of		푥,  

       훼(푡) = 푂 푡 ∗ , where 휔 is given in assumption B1, 

휃∗ ≥ 휔∗ 휔 {2(휔∗ − 휔)}⁄ and		푛 ⁄ ℎ ∗⁄ ⁄ = 푂(1). 훼 − 푚푖푥푖푛푔 Imposed 

in this assumption is weaker than 	훽 − 푚푖푥푖푛푔 in Hall et.al. (1999). 
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4.3.2 Asymptotic properties of The New Weighted Estimator 

To investigate the asymptotic behaviour of 푓 (푟|푥) including the asymptotic 

normality, we have the following lemmas  

Lemma 4.1: Under Assumptions 4.3.1 (A1 – A5), we have 

휆 = −ℎ휆 1 + 표 (1)    and  푝 (푥) = 푛 푏 (푥) 1 + 표 (1)  

where   휆 = 휇 (푊)푔′(푥)/[2휇 (푊 )푔(푥)]  and  

푏 (푥) = [1− ℎ휆 (푋 − 푥)푊 (푥 − 푋 )]  

Further, we have 푝 (푐ℎ) = 푛 푏 (푐ℎ) 1 + 표 (1) 	 where 푏 (푥) = [1 +

휆 (푋 − 푥)퐾 (푥 − 푋 )]  

Lemma 4.2: Under Assumptions 4.3.1 (A1-A5), we have for any 푗 ≥ 0, 

퐽 = 푛 푐 (푥)
푋 − 푥
ℎ = 푔(푥)휇 (푊) + 푂 (ℎ ) 

where  푐 (푥) = 푏 (푥)푊 (푥 − 푋 ). It follows from Lemmas 4.1 and 4.2 that 

푊 , (푥, ℎ) ≈
푏 (푥)푊 (푥 − 푋 )

∑ 푏 (푥)푊 (푥 − 푋 ) ≈ 푛 푔 (푥)푏 (푥)푊 (푥 − 푋 ) =
푐 (푥)
푛푔(푥) (4.3.2.1) 

 

Theorem 4.1 Under Assumption 4.3.1 (A1-A6) with ℎ in A3 and A6 replaced 

by	ℎ ℎ, we have 
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	 푛ℎ ℎ 푓 (푟|푥) − 푓(푟|푥) − 퐵 (푟|푥) → 푁 0, 휎 (푟|푥) 																																				(4.3.2.2) 

where the asymptotic bias is  

퐵 (푟|푥) =
ℎ
2 휇 (푊)푓 , (푟|푥) +

ℎ
2 휇 (퐾)푓 , (푟|푥) 

and the asymptotic variance is 

휎 (푟|푥) = 휇 (퐾 )휇 (푊 )푓 (푟|푥) 푔(푥)⁄  

Proof of Theorem 4.1 

We decompose 푓 (푟|푥) − 푓(푟|푥) into three parts as follows 

																					푓 (푟|푥) − 푓(푟|푥) = 퐼 + 퐼 + 퐼 																																															(4.3.2.3) 

where with 휀 , = 푟∗(푟)− 퐸(푟∗(푟)|푋 ) 

퐼 = ∑ 휀 , 푊 , (푥, ℎ),  퐼 = 퐸[(푟∗(푟)|푋 ) − 푓(푟|푋 )]푊 , (푥,ℎ), and   

퐼 =
1
2 푓

, (푟|푥)푊 , (푥, ℎ)(푋 − 푥) + 표 (ℎ ) 

=
1
2푔

(푥)푓 , (푟|푥)푛 푐 (푥)(푋 − 푥) + 표 (ℎ ) 

=
ℎ
2 휇 (푊)푓 , (푦|푥) + 표 (ℎ ) 

As in the proof of Lemma 4.2, we have 

퐼 =
ℎ 휇 (퐾)

2푔(푥) 푛 푓 , (푟|푋 )푐 (푥) + 표 (ℎ + ℎ )

=
ℎ
2 휇 (퐾)푓 , (푟|푥) + 표 (ℎ + ℎ ) 
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Therefore 

퐼 + 퐼 =
ℎ
2 휇 (푊)푓 , (푟|푥) +

ℎ
2 휇 (퐾)푓 , (푟|푥) + 표 (ℎ + ℎ )

= 퐵 (푟|푥) + 표 (ℎ + ℎ ) 

Thus (4.3.2.3) becomes 

푛ℎ ℎ 푓 (푟|푥) − 푓(푟|푥) − 퐵 (푟|푥) + 표 (ℎ + ℎ ) = 푛ℎ ℎ퐼  

= 푔 (푥)퐼 1 + 표 (1) → 푁 0,휎 (푟|푥)  

where 퐼 = ℎ ℎ 푛⁄ ∑ 휀 , 푐 (푥). This together with Lemma 4.2 proves the 

theorem . 

To study the asymptotic behavior of		푍 (푟|푥), similar to Theorem 4.1 we have 

the following asymptotic normality for 푍 (푟|푥) 

Theorem 4.2 Under Assumption 4.3.1 (A1-A6), we have 

								√푛ℎ 푍 (푟|푥)− 푍(푟|푥) − 퐵 (푟|푥) → 푁{0, 휎 (푟|푥)}																																(4.3.2.4) 

Where the asymptotic bias is given by 

퐵 (푟|푥) =
ℎ
2 휇 (푊)푍 , (푟|푥) −

ℎ
2 휇 (퐾)푓 , (푟|푥) 

and the asymptotic variance is  

휎 (푟|푥) = 휇 (푊 )푍(푟|푥) [1− 푍(푟|푥)] 푔(푥)⁄  

In particular, if Assumption 4.3.1(A7) holds true, then 

√푛ℎ 푍 (푟|푥) − 푍(푟|푥) −
ℎ
2 휇 (푊)푍 , (푟|푥) → 푁{0,휎 (푟|푥)} 

The 퐴푀푆퐸 of 푍 (푟|푥) is 
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퐴푀푆퐸 푍 (푟|푥) =
{ℎ 휇 (푊)푍 , (푟|푥) − ℎ 휇 (퐾)푓 , (푟|푥)}

4  

																																																		+
1
푛ℎ

휇 (푊 )푍(푟|푥)[1− 푍(푟|푥)]
푔(푥) 																																(4.3.2.5) 

Proof of Theorem 4.2 

Similar to (4.3.2.3), we have 

푍 (푟|푥) − 푍(푟|푥) = 퐼 + 퐼 + 퐼  

where  휀 , = 퐺̅ (푟 − 푟 ) − 퐸 퐺̅ (푟 − 푟 |푋 )  

퐼 = 휀 , 푊 , (푥,ℎ). 퐼 = [	퐸 퐺̅ (푟 − 푟 |푋 ) − 푍(푟|푋 )]푊 , (푥,ℎ) 

and 

퐼 = [푍(푟|푋 ) − 푍(푟|푥)]푊 , (푥, ℎ) 

Similar to the analysis of 퐼  by Taylor expansion, Lemmas 4.1 and 4.2, we have 

퐼 =
1
2 푆

, (푟|푥)푊 , (푥, ℎ)(푋 − 푥) + 표 (ℎ ) 

=
1
2푍

, (푟|푥)푔 (푥)푛 푐 (푥)(푋 − 푥) + 표 (ℎ ) 

=
ℎ
2 휇 (푊)푍 , (푟|푥) + 표 (ℎ ) 

To evaluate	퐼 , first, we consider the following  

퐸 퐺̅ (푟 − 푟 |푋 = 푥) = 퐾(푢)푍(푟 − ℎ 푢|푥)푑푢
∞

∞
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푍(푟|푥) +
ℎ
2 휇 (퐾)푍 , (푟|푥) + 표(ℎ ) 

															= 푍(푟|푥) −
ℎ
2 휇 (퐾)푓 , (푦|푥) + 표(ℎ )																																																						(4.3.2.6) 

By (4.3.2.6) and following the same arguments as in the proof of Lemma 4.2 

and by (4.3.2.5) 

√푛ℎ 푍 (푟|푥) − 푍(푟|푥)− 퐵 (푟|푥) + 표 (ℎ + ℎ ) = √푛ℎ퐼  

and 

√푛ℎ퐼 = 푔 (푥)퐼 1 + 표 (1) → 푁{0, 휎 (푟|푥)} 

∎ 

4.3.3 Asymptotic theory of conditional value at risk 

By the differentiability of	푍 푞 (푥) 푥 , we use the Taylor expansion and 

ignore the higher order terms to obtain 

푍 푞 (푥) 푥 = 휃 ≈ 푍 (푞 (푥)|푥) − 푓 (푞 (푥)|푥) 푞 (푥)−푞 (푥)  

Then by Theorem 4.1 

푞 (푥)−푞 (푥) ≈ 푍 (푞 (푥)|푥) − 휃 /푓 (푞 (푥)|푥) 

                                                  ≈ 푍 (푞 (푥)|푥)− 휃 /푓 (푞 (푥)|푥) 

As an application of Theorem 4.2, we can establish the following theorem for 

the asymptotic normality of		푞 (푥), whose proof is similar to that for Theorem 

4.2. 

Theorem 4.3: Under Assumptions 4.3.1 (A1-A6), we have  

																		√푛ℎ 푞 (푥)−푞 (푥)− 퐵 (푥) → 푁{0,휎 (푥)},																																				(4.3.3.1) 
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Where the asymptotic bias is 퐵 (푥) = 퐵 (푞 (푥)|푥)/푓(푞 (푥)|푥) and the 

asymptotic variance is 

		휎 (푥) = 휇 (푊푃 )휃(1− 휃)/[푔(푥)푓 (푞 (푥)|푥)]. 

 In particular, if Assumption 4.3.1 (A7) holds, then 

	√푛ℎ 푞 (푥)−푞 (푥)−
ℎ
2
푍 , (푞 (푥)|푥)
푓 푞 (푥) 푥

휇 (푃) → 푁 0, 	휎 (푥) 																										(4.3.3.2) 

The significance of Theorem 4.3 is that 푞 (푥)−푞 (푥) = 푂 ℎ + ℎ + (푛ℎ) ⁄  

so that 푞 (푥) is a consistent estimator of	푞 (푥). The term 푍 , (푞 (푥)|푥) is the 

bias term involving the second derivative of the conditional distribution function 

with respect to	푥, which utilizes the approximation of the conditional 푉푎푅 

function. Theorems 4.2 and 4.3 implies that if the initial bandwidth ℎ  is chosen 

as small as possible such that 	ℎ = 표(ℎ), thus the final estimates of 푍(푟|푥) and 

푞 (푥) are not sensitive to the choice of ℎ  as long as it satisfies Assumption 

4.3.1 (A7) making the selection of bandwidth much easier in practice. 

By Theorem 4.3 and following Yu and Jones (1998), the AMSE of 푞 (푥) is given 

by 

 

퐴푀푆퐸(푞 (푥) =
{ℎ 푍 , (푞 (푥)|푥)휇 (푃)− ℎ 푓 , (푞 (푥)|푥)휇 (퐾)}

4푓 푞 (푥) 푥
 

																																				+
1
푛ℎ

휇 (푃 )[휃(1 − 휃) + 2ℎ 푓(푞 (푥)|푥)훼(퐾)]
푓 푞 (푥) 푥 푔(푥)

																					(4.3.3.3) 
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A comparison of (4.3.3.3) with the Weighted Nadaraya-Watson estimator 

reveals that (4.3.3.3) has two extra terms which are negligible if assumption 

(A7) is satisfied due to vertical smoothing in the 푟 direction. 

By minimizing 퐴푀푆퐸 in (4.3.3.3) and taking	ℎ = 표(ℎ), therefore we obtain the 

optimal bandwidth given by 

													ℎ , (푥) =
휇 (푃 )휃(1− 휃)

휇 푍 , 푞 (푥) 푥 푔(푥)
푛 ⁄ 																																						(4.3.3.4) 

Thus the optimal rate of the AMSE of	푞 (푥) is	푛 ⁄ . 

Under Assumption A7, the asymptotic result at the boundary point 	푥 = 푏푑 for 

푞 (푥) is 

													√푛ℎ 	푞 (푥)(푏푑) − 푞 (푥)(푏푑)− 퐵 , → 푁 0,휎 , 																								(4.3.3.5) 

where the asymptotic bias is 

퐵 , = ℎ 훽 (푏)푍 , (푞 (푥)(0 +)|0 +)/[2훽 (푏)푓(푞 (푥)(0 +)|0 +)] 

and the asymptotic variance is  

휎 , = 훽 (0)휃[1− 휃]/[훽 (푏)푓 (푞 (푥)(0 +)|0 +)푔(0 +)] 

To examine the asymptotic behavior of  훾 (푥) we have 

Theorem 4.4: Under Assumptions 4.3.1 (A1 – A4) and (B2 –B5) 

																													√푛ℎ 훾 (푥)− 훾 (푥)− 퐵 (푥) → 푁 0,휎 (푥) ,																													(4.3.3.6) 

where the asymptotic bias is 퐵 (푥) = 퐵 , (푥) + 훾 (퐾)휃 푓(푞 (푥)|푥) with  

퐵 , (푥) =
ℎ
2 휇 (푃)휃 푙 , (푞 (푥)|푥) − 푞 (푥)푍 , (푞 (푥)|푥)  
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and the asymptotic variance is 

휎 (푥) =
훾 (푃 )
휃푔(푥) [휃 푙 (푞 (푥)|푥)− 휃훾 (푥) + (1 − 휃)푞 (푥){푞 (푥)− 2훾 (푥)}] 

In particular if Assumption (A7) holds true then, 

																											√푛ℎ 훾 (푥)− 훾 (푥)− 퐵 , (푥) → 푁 0,휎 (푥) 																													(4.3.3.7) 

Theorem 4.4 concludes that 훾 (푥)− 훾 (푥) = 푂 ℎ + ℎ + (푛ℎ) ⁄  so that 

훾 (푥) is a consistent estimator of 훾 (푥) with a convergence rate(푛ℎ) ⁄ . 

The 퐴푀푆퐸 of 훾 (푥) is given by 

퐴푀푆퐸 훾 (푥) =
1
푛ℎ휎

(푥) + 퐵 , (푥) +
ℎ
2 훾 (퐾)휃 푓(푞 (푥)|푥) 																(4.3.3.8) 

Minimizing 퐴푀푆퐸  in (4.3.3.8) with respect to ℎ yields the optimal bandwidth 

given by 

		ℎ , (푥) =
휎 (푥)

훾 (푃)휃 푙 , 푞 (푥) 푥 − 푞 (푥)푍 , 푞 (푥) 푥
푛 ⁄ 								(4.3.3.9) 

Therefore the minimal rate of  퐴푀푆퐸 for 훾 (푥) is	푛 ⁄ . 

The asymptotic results for 훾 (푥) at the left boundary point	푥 = 푏푑, under 

Assumption (A7) is given by 

√푛ℎ 훾 (푏푑)− 훾 (푏푑)− 퐵 , (푥) → 푁 0, 휎 , , 

where the asymptotic bias is  

퐵 , = ℎ 훽 (푏)휃 푙 , (푞 (0 +)|0 +) − 푞 (0 +)푍 , (푞 (0 +)|0 +) /[2훽 (푏)] 

and the asymptotic variance is 
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휎 , =
훽 (0)

휃훽 (푏)푔(0 +)
[휃 푙 (푞 (0 +)|0 +) − 휃훾 (0 +)

+ (1 − 휃)푞 (0 +){푞 (0 +) − 2훾 (0 +)}]. 

 

4.4 Generalized Extreme Value  

 Instead of focusing on the extremes we focus on exceedances of the 

measurement over some high threshold and the time at which the exceedances 

occur. Denote the rate of change of the price of a utility measured in a fixed 

time interval by	푟 . Consider the order statistics of a collection of 푛 rates of 

changes {푟 , … , 푟 } with 푟( ) as the minimum and 푟( ) as the maximum. For a 

long investment position, loss occurs when the rates of change are negative. 

Since the theory applies to both maximum and minimum returns, if we are 

interested in negative rates of change, we have  

푟( ) = max 푟 , and 	푟( ) = −max −푟 = −푟  

The treatment of negative tail is completely analogous to the positive tail only 

that the scale of the most extreme price movements is different. While the 

participant large industrial consumers are more concerned about unexpected 

price increases, others like producers and dealers are more interested in 

monitoring price drops than large price increases.   Assume that the rates of 

change 푟  are serially independent with a common cumulative distribution 퐹(푥) 

and that the range of 푟  is	[푚,푢]. For log rates, we have 푚 = −∞ and	푢 = ∞. In 

practice the cumulative density function of 푟  is unknown, however as 푛 



93 
 

increases to infinity the cumulative density function becomes degenerate, 

namely  퐹 , (푥) → 0 if 푥 < 푢 and 퐹 , (푥) → 1 if 푥 ≥ 푢  as 푛 goes to infinity. 

Extreme value theory is concerned with finding two sequences {훽 }  and	{훼 }, 

where	훼 > 0, such that the distribution of 푟 ≡ 푟( ) − 훽 훼⁄   converges to a 

degenerate distribution as 푛 goes to infinity. 훽 , is the location series and 훼  is 

a series of scaling factors. Under the independent assumption the limiting 

distribution of the normalized maximum (푟 ) is given by  

																																		퐹∗(푥) =
푒푥푝[−(1 + 휉푥)] 									푖푓	휉 ≠ 0

푒푥푝[−푒푥푝(−푥)]													푖푓		휉 = 0
																																										(4.4.0.1)	                

Where 휉 is the shape parameter that governs the tail behavior of the limiting 

distribution and 훼 =  is called the tail index of the distribution. The limiting 

distribution (4.4.0.1) is the generalized extreme value (퐺퐸푉) distribution of 

Jenkinson (1955) for the maximum. It encompasses the three types of limiting 

distribution of Gnedenko (1943); when 휉 = 0  we have the 퐺푢푚푏푒푙 family which 

is a thin tailed distribution like the lognormal and the normal. When	휉 > 0, we 

have the 퐹푟é푐ℎ푒푡 family and when	휉 < 0, we have the 푊푒푖푏푢푙푙	 family. In risk 

management we are interested with the 퐹푟é푐ℎ푒푡 family, with Probability 

distribution function 

								푓∗(푥) =
(1 + 휉푥) 푒푥푝 −(1 + 휉푥) ⁄ 		; 푥 ≠ 0

푒푥푝[−푥 − 푒푥푝(−푥)]																									;푥 = 0
																																				(4.4.0.2) 
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Bermam (1964), showed that the same form of the limiting extreme value 

distribution hold for stationary normal sequences provided that the 

autocorrelation function of 푟  is squared summable that is (	∑ 휌 < ∞) , 

where 휌  is the 푙푎푔	푖- autocorrelation function of 푟 . 

The shape parameter ξ can be estimated nonparametrically using the Hill 

estimator (휉 ) or the Pickands’ estimator (휉 ) defined as follows. Let 푘 be a 

positive integer then  

																										휉 (휅) =
1
휅 푙푛 푟( ) − 푙푛 푟( ) 																																					(4.4.0.3) 

																			휉 (휅) =
1

푙푛(2) 푙푛
푟( ) − 푟( )

푟( ) − 푟( )
; 			휅 ≤

푁
4 																										(4.4.0.4) 

where the argument (푘) is used to emphasize that the estimator depends on 푘. 

The choice of 푘 differs between the Hill and the Pickands estimators. The Hill 

estimator is applicable to the 퐹푟é푐ℎ푒푡 distribution only, but when applied it is 

more efficient than the Pickands. Goldie and Smith (1987) show that 

√휅[휉 (휅) − 휉] is asymptotically normal with mean zero and variance	휉 . In 

practice, one may plot the Hill estimator 휉 (휅) against 휅 and find a proper 휅 

such that the estimator appears stable. The estimated tail index 훼 =
( )

 can 

then be used to obtain extreme quantiles of the rate of change data.  

The Hill estimator for 훼 is given by  

훼 (휅) =
1
휉

(휅) 
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If 퐹 is in the domain of attraction of (4.4.0.1) a 퐺퐸푉 distribution, then 휉 (휅) 

converges in probability to 휉 as 푘 → ∞ and → 0 and that 휉 (푘) is 

asymptotically normally distributed with asymptotic variance 

푎푣푎푟 훼 (휅) =
훼
휅  

Suppose that the loss distribution 퐹 is such that	1 − 퐹(푥) = 푥 퐿(푥), with 

훼 = > 0 where 퐿(푥) is a slowly varying function. Let	푥 > 푟( ), where 푟( ) is 

a higher order statistics, then the Hill estimator of 퐹(푥) is given by 

																																							퐹 (푥) = 1 −
휅
푛

푥
푟( )

( )

																																													(4.4.0.5) 

Inverting the Hill tail estimator (4.4.0.5) gives the Hill quantile estimator 

																											푥 , = 푟 − 푟
푛
휅

(1− 휃) ( ) − 1 																																	(4.4.0.6) 

where			휃 > 1 − , the Hill quantile estimator (4.4.0.6) is very similar to the 푀퐿퐸 

퐺푃퐷 quantile estimator.  

 

4.4.1 The Extremal Index 

So far our discussions of extremal values are based on the assumption that the 

data are i.i.d random variables. However in reality extremal events tend to occur 

in clusters because of the serial dependence in the data. We extend the theory 

and applications of extreme values to cases in which the data form a strictly 

stationary time series. The basic concept of the extension is that extremal index 
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allows one to characterize the relationship between the dependence structure 

of the data and their extremal behavior. 

Let 푟 , 푟 , … be a strictly stationary sequence of random variables with marginal 

distribution function	퐹(푟). Consider the case of 푛 observations	{푟 |푖 = 1, … ,푛}. 

Let 푟( ) be the maximum of the data, that is	푟( ) = 푚푎푥{푟 }. We seek the limiting 

distribution of 푟( ) − 훽 훼⁄  for suitably chosen normalizing constants 훼 > 0 

and 훽  when {푟 } are serially dependent. 

Suppose that the serial dependence of the stationary series 푟  decays quickly 

so that 푟  and 푟  are essentially independent when 푙 is sufficiently large, in 

other words, assume that the long range dependence of 푟  vanishes quickly. We 

divide the data into disjoint blocks of size		푏. Specifically let 푔 = [푛 푏⁄ ] be the 

largest integer less than or equal to	푛 푏⁄ . The 푖푡ℎ block of the data is then 

푟 푗 = (푖 − 1) ∗ 푏 + 1, … , 푖 ∗ 푏  where it is understood that the (푔 + 1)	푡ℎ block 

may contain less than 푏 observations. Let		푟 , , be the maximum of the 푖  block 

that is		푟 , = 푚푎푥 푟 푗 = (푖 − 1) ∗ 푏 + 1, … , 푖 ∗ 푏 . The collection of block maxima 

is	 푟 , 푖 = 1, … .푔 + 1 . From the definitions, it is easy to see that 

																																																																		푟( ) = max
,…,

푟 , 	 																																									(4.4.1.1) 

that is, the sample maximum is also the maximum of the block maxima. If the 

block size 푏 is sufficiently large and the block maximum 푟 ,  does not occur near 

the end of the ith block, then 푟 ,  and 푟 ,  are sufficiently far apart and 

essentially independent under the assumption of weak long range dependence 
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in {푟 }. Consequently 푟 , 푖 = 1, … .푔 + 1  can be regarded as a sample of 

identically and independent distributed variables and the limiting distribution of 

its maximum, which is			푟( ), should be the extreme value distribution. The 

proper condition needed for the maximum 푟( ) of a strictly stationary time series 

to have the extreme value limiting distribution is obtained in Leadbetter (1974) 

and is known as the 퐷(휂 )	 condition. 

 

4.4.2 The limiting distribution of a stationary time series 

Consider the sample	푟 , 푟 , … , 푟 . To place limits on the long range dependence 

of	{푟 }, let 휂  be a sequence of thresholds increasing at a rate for which the 

expected number of exceedances of 푟  over 휂  remains bounded. 

Mathematically, this is to say that 

		lim	 푠푢푝	푛[1− 퐹(휂 )] < ∞ 

 where 퐹(∙) is the marginal cumulative distribution of	푟 . For any positive 

integers 푝 and 푞 suppose that 푖 		(푣 = 1, … ,푝) and 푗 			(푡 = 1, … ,푞) are arbitrary 

integers satisfying 

1 ≤ 푖 < 푖 < ⋯ < 푖 < 푗 < ⋯ < 푗 ≤ 푛, where 			푗 − 푖 ≥ 푙  , and 	푙  is a 

function of the sample size 푛 such that 	푙 푛⁄ → 0 as	푛 → ∞. Let 퐶 = 푖 , 푖 , … , 푖  

and 퐶 = 푗 , 푗 , … , 푗  be two sets of time indices. From the prior condition, 

elements in 퐶  and 퐶  are separated by at least 	푙  time periods.  

The condition	퐷(휂 )	is satisfied if 
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						 푃 max
∈ ∪

푟 ≤ 휂 − 푃 max
∈

푟 ≤ 휂 푃 max
∈

푟 ≤ 휂 ≤ 훿 . 푙 															(4.4.2.1) 

where 훿 . 푙 → 0 as 푛 → ∞. This condition says that any two events of the form 

푚푎푥 ∈ 푟 ≤ 휂  and 푚푎푥 ∈ 푟 ≤ 푢휂  can become asymptotically independent 

as the sample size 푛 increases when the index subsets 퐶  and 퐶  of {1,2, … ,푛} 

are separated by a distance 푙  which satisfies   	푙 푛⁄ → 0 as	푛 → ∞, which is a 

weak condition. 

Lemma 4.4.2: 

 (i). The 훿 ,  appearing in 퐷(휂 ) may be taken to be non- increasing in 푙 for each 

 fixed		푛.  

  (ii) For such 훿 ,  taken non increasing in 푙 for each fixed	푛, the condition 훿 ,푙 → 0   
 as  푛 → ∞, 푙 = 표(푛), may be written as 

																									훼 ,[ ] → 0		푓표푟	푒푎푐ℎ				휆 > 0																																																														(4.4.2.2) 

Proof For (i), we simply note that 훿 ,  may be replaced by the maximum of the 

left hand side of (4.4.2.1) over all allowed choices of 푖′푠 and 푗′푠 to obtain a 

possible smaller 훿 ,  which is non increasing in 푙 for each 푛 and still satisfies 

훿 , → 0 as 푛 → ∞. 

 For (ii), it is trivially seen that if  훿 , → 0 for some 푙 = 표(푛) then (4.4.2.2) holds.  

The converse may be shown by noting that (4.4.2.2) implies the existence of an 

increasing sequence of constants	푚  such that		훿 ,[ ⁄ ] < 푘  for		푛 ≥ 푚 . If 푘  

is defined by 푘 = 푎 for 푚 ≤ 푛 ≤ 푚 , 푎 ≥ 1, then 푚 ≤ 푛 so that	훼 ,[ ⁄ ] <

푘 → 0, and the sequence {푙 } may be taken to be	{[푛 푘 ]⁄ }                            ∎                                                                 
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Strong mixing implies	퐷, which in turn implies 퐷(휂 ) for any sequence	{휂 }. Also 

퐷(휂 ) is satisfied for appropriately chosen	{휂 } by stationarity normal 

sequences under weak conditions, whereas strong mixing need not be. 

Theorem 4.5 (i) Suppose that {푟 |푖 = 1, … , 푛} is a strictly stationary time series 

for which there exist sequences of constants 훼 > 0 and 훽  and a 

nondegenerate distribution function 퐹∗(∙) such that 

																																	푃
푟( ) − 훽

훼 ≤ 푟 				→ 		퐹∗(푟) 	= 퐹∗ (푟),							푛 → ∞															(4.4.2.2) 

(ii) The min-stable distributions are chosen given in (i) above. 

PROOF of Theorem 4.5 (i) Suppose that (4.4.2.2) holds so that writing 

푀′ = 푚푎푥(−휉 ,−휉 , … ,−휉 ) = −푟( ) 

푃 훼 푀′ + 훽 < 푟 = 1 − 푃 훼 푀′ + 훽 ≥ 푟  

= 1 − 푃{훼 (푚 − 훽 ) ≤ −푟} 

→ 1 − 퐹(−푟) = 퐺(푟), 

say, where convergence occurs at all points 푟 of continuity of 퐺. But for such 

푟 and 휀 > 0 such that 퐺 is also continuous at 푟 + 휀, since 

푃 훼 푀′ + 훽 < 푟 ≤ 푃 훼 푀′ + 훽 ≤ 푟 ≤ 푃 훼 푀′ + 훽 < 푟 + 휀  

we have, letting 푛 → ∞ and then 휀 → 0, 

푃 훼 푀′ + 훽 ≤ 푟 → 퐺(푟) 

so that 퐺 is one of the three maximal extreme value distribution functions. 

Since  

퐹(푟) = 1 − 퐺(−푟) 
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the three forms listed above follow from the three possible forms for 퐺 given 

by the Generalized extreme value Theorem. 

(ii) If 퐹 is min-stable  with distribution function 퐹 such that, for each 

푛 = 2,3, …, 1 − 퐹(푎 푟 + 푏 ) = 1 − 퐹(푟)  holds, then the distribution 

function 

퐺(푥) = lim
↓

[1− 퐹(−푟 − 휀)] = 1 − 퐹(−푟 −) 

satisfies 1− 퐹(−푟) ≤ 퐺(푥) ≤ 1 − 퐹(−푟 − 휀) for all 휀 > 0 and hence 

퐺 (푎 푟 − 푏 ) ≤ 1 − 퐹(−푎 (푟 + 휀) + 푏 ) = 1 − 퐹(−푟 − 휀) ≤ 퐺(푟 + 휀) 

and 

퐺 (푎 푟 − 푏 ) ≥ 1 − 퐹(−푎 푟 + 푏 ) = 1 − 퐹(−푟) ≥ 퐺(푟 − 휀) 

for any 휀 > 0. Since 퐺(푟) and 퐺 (푎 푟 − 푏 ) are right continous it follows that 

퐺 (푎 푟 − 푏 ) = 퐺(푟) so that 퐺 is max-stable and, by (4.4.0.1) it is one of the 

three extreme value distributions for maxima. This proves part (ii).                  ∎ 

The constant 휃 ∈ (0, 1] in (4.4.2.2) is called the extremal index which plays an 

important role in determining the limiting distribution 퐹∗(푟) for the maximum of a 

strictly stationary time series,  		→   denotes convergence in distribution. If the 

condition  퐷(휂 ) holds with 휂 = 훼 푟 + 훽  for each 푟 such that,		퐹∗(푟) > 0, then 

퐹∗(푟) is an extreme value distribution function. 

For the case	휉 ≠ 0, from the result of (4.4.0.1) 퐹∗(푟) is a generalized extreme 

value distribution and assumes the form 
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																									퐹∗(푟) = 푒푥푝 − 1 + 휉
푟 − 훽
훼

⁄

																																																				(4.4.2.3) 

where 	휉 ≠ 0 and 1 + 휉 (푟 − 훽) 훼⁄ > 0. Based on Theorem 4.5 we have 

퐹∗(푟) = 퐹∗ (푟) = 푒푥푝 −휃 1 + 휉
푟 − 훽
훼

⁄

 

= 푒푥푝 −
1
휃

+ 휉
푟 − 훽
훼휃

⁄

= 푒푥푝 − 휉
훼 휉⁄ + 푟 − 훽

훼휃

⁄

 

= 푒푥푝 − 1 + 휉
푟 − 훽 + 훼 휉⁄ − 훼 휃 휉⁄

훼휃

⁄

 

= 푒푥푝

⎣
⎢
⎢
⎡
− 1 + 휉

푟 − 훽 − 훼
휉 1 − 휃

훼휃

⁄

⎦
⎥
⎥
⎤
 

																														= 푒푥푝 − 1 + 휉 ∗
푟 − 훽 ∗
훼 ∗

∗⁄

																																																	(4.4.2.4) 

Therefore for a stationary time series {푟 } satisfying the 퐷(휂 ) condition, the 

limiting distribution of the sample maximum is the generalized extreme value 

distribution with the shape parameter 휉 which is the same as that of the i.i.d 

sequences. On the other hand the location and scale parameters are affected 

by extremal index		휃. Result for the case 휉 = 0 can be derived via the same 

approach and we have 훼 ∗= 훼 and	훽 ∗= 훽 + 훼푙푛(휃). 

4.4.3 Value at risk for a stationary time series 

The relationship  퐹∗(푟) of the maximum of a stationary time series can be used 

to calculate  	푉푎푅 of an institution position when the associated log rates of 
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change form a stationary time series. Specifically from	푃 푟( ) ≤ 휂 ≈ [퐹(푟)] , 

the (1 − 푝)푡ℎ quantile of 퐹(푟) is the (1− 푝)  th quantile of the limiting extreme 

value distribution of	푟( ).  

Consequently, the 푉푎푅  based on the extreme value theory becomes 

									푉푎푅 =
훽 −

훼
휉 1 − [−푛휃	푙푛(1− 푝)	] 				푖푓					휉 ≠ 0		

훽 − 훼 푙푛[−푛휃	푙푛(1 − 푝)]																		푖푓							휉 = 0
		 																				(4.4.3.1) 

where	푛, is the length of the subperiod. From the formulae, we risk 

underestimating 푉푎푅  if the extremal index is overlooked.  

 

4.5 Peak over Threshold 

Let us denote the daily rate of change by	푟 . Let 휂 be a specified high threshold 

and suppose that the 푖 − 푡ℎ exceedance at day 푡  is (푟 ≥ 휂). We shall focus on 

the data (푡 , 푟 − 휂) where 푟 − 휂 is the exceedance over the threshold	휂. The 

occurrence times {푡 } provides useful information about the intensity of the 

occurrence of important “rare events”. A cluster of 푡  indicates a period of large 

declines, the exceeding amount (excesses) provides the actual quantity of 

interest. Different choices of the threshold 휂 leads to different estimates of the 

tail index  and is based on risk tolerance. Since different institutions and 

investors have different risk tolerance, the choice of 휂  is a statistical problem as 

well as a financial one. According to Tsay (2010) 휂 = 2.5% may fare well for a 

stable rate of change series and 휂 may be as high as 10% for a volatile series. 
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Let the occurrence of the event {푟 ≤ 휂} follow a point process like a Poisson 

process. If the intensity parameter 휆 of the process is time invariant then the 

process is homogenous. Further, consider the conditional distribution of  

푟 ≤ 푥 + 휂 given that 푟 > 휂  

푃푟(푟 ≤ 푥 + 휂|푟 > 휂) =
푃푟(휂 ≤ 푟 ≤ 푥 + 휂)

푃푟(푟 > 휂) 								=
푃푟(푟 ≤ 푥 + 휂) − 푃푟(푟 ≤ 휂)

1 − 푃푟(푟 ≤ 휂) 			(4.5.0.1) 

Using (4.4.0.1) and the approximation 푒 ≈ 1 − 푦 we obtain  

푃푟(푟 ≤ 푥 + 휂|푟 > 휂) =
퐹∗(푥 + 휂) − 퐹 (휂)

1 − 퐹∗(푦)  

=
푒푥푝 − 1 + 휉(푥 + 휂 − 훽)

훼 − 푒푥푝 − 1 + 휉(휂 − 훽)
훼

1 − 푒푥푝 − 1 + 휉(휂 − 훽)
훼

 

																						≈ 1 − 1 +
휉푥

훼 + 휉(휂 − 훽) 																																																																		(4.5.0.2) 

If we substitute 훼 + 휉(휂 − 훽) with 휓(휂) we have a cumulative distribution 

function 

										퐺 , ( )(푥) =

⎩
⎪
⎨

⎪
⎧

1− 1 +
휉푥
휓(휂) 																		푓표푟	휉 ≠ 0

1 − 푒푥푝[−푥 휓(휂)⁄ ]															푓표푟	휉 = 0

																															(4.5.0.3) 

Which is a generalized Pareto distribution(퐺푃퐷), when  휓(휂) > 0 and	푥 ≥ 0. 

Large observations which exceed a high threshold can be approximated 

reasonably well by the Generalized Pareto Distribution. The parameters can be 
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estimated consistently if the threshold exceedances are independent regardless 

of the true underlying distribution. In general given a high threshold 휂  and a 

random variable		푌 = 푟 , the probability of 푟  exceeding 	휂  at most by 푥 is given 

by  

																			퐹 (푥) = 푃[푟 − 휂 ≤ 푥|푟 > 휂] =
퐹(푥 + 휂) − 퐹(휂)

1 − 퐹(휂) 																														(4.5.0.4) 

For a distribution function	퐹, it is possible to find a positive function 훽(휂) such 

that  

																																									푙푖푚
→

	 푠푢푝 퐹 (푥)− 퐺 , (푥) = 0			 																																	(4.5.0.5) 

with 푟  corresponding to the right end point of 퐹. Rearranging (4.5.0.4) and 

using 

퐹 (∙) ≈ 퐺 , (∙), it holds that  

																	1 − 퐹(휂 + 푥) ≈ [1 − 퐹(휂)] 1− 퐺 , (푥) 																																																		(4.5.0.6) 

1 − 퐺 , (푥) can be obtained by estimating the 퐺푃퐷 parameters by maximum 

likelihood.  We estimate 1 − 퐹(휂) = 푍(휂) by the use of the empirical distribution 

function  

																														푍(휂 + 푥) =
푁
푛 1 + 휉

푥
훽

																																																						(4.5.0.7) 

Where 푁  denotes the number of exceedances over threshold	휂.  
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Employing a change of variables 푦 = 휂 + 푥 and fixing the distribution value at 

the probability of interest		퐹(푦) = 휃, we obtain the quantile estimator 푞   by 

inverting (4.5.0.7) to get  

1 − 휃 =
푁
푛 1 + 휉

푦 − 휂
훽

 

																																												⇔ 푞 = 휂 + (1− 휃)
푛
푁 − 1 ×

훽
휉
																								(4.5.0.8) 

where 휉 and 훽(휂) denotes the Maximum likelihood estimates of ξ and 훽(휂) 

respectively.  From (4.5.0.1), (4.5.0.2) and the GPD (4.5.0.3) we have 

퐹(푦) − 퐹(휂)
1 − 퐹(휂) ≈ 퐺 , ( )(푥) 

If we estimate 퐹(휂) by the empirical 퐶퐷퐹 then 

퐹(휂) =
푛 − 푛
푛  

Consequently by (4.5.0.3) 

퐹(푦) = 퐹(휂) + 퐺(푥)[1− 퐹(휂)] 

																																							≈ 1 −
푛
푛 1 +

휉(푦 − 휂)
휓(푥) 																																																				(4.5.0.9) 

For a small upper tail probability	푝, let	휃 = 1 − 푝, we estimate the 휃 − 푡ℎ quantile 

Value at Risk of 퐹(푦) by 

																																	푉푎푅 = 휂 −
휓(휂)
휉

1−
푛
푁

(1 − 휃) 																																		(4.5.1.0) 
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For a generalized Pareto distribution and using the properties of	퐺푃퐷,  

퐸(푟 − 푉푎푅 |푟 > 푉푎푅 ) =
휓(휂) + 휉(푉푎푅 − 휂)

1 − 휉  

provided that		0 < 휉 < 1. Consequently we have the Expected shortfall 

																																																					퐸푆 =
휉(푉푎푅 )

1 − 휉
+
휓(휂) − 휉휂

1 − 휉 																																		(4.5.1.1) 

 

4.6 The Poisson Point Process 

 Applying (4.5.0.2) and considering jointly the exceedances and exceeding 

times, we view the excess time and excess values as a two dimensional point 

process	 푡 , 푟 . The point process captures the stochastic volatility effects in 

financial time series. Assume that the baseline time interval is 퐵 which is the 

trading days in a year. Let 푡 be the time interval of the data points, denote the 

data span by 푡 = 1,2, … ,푇 where 푇 is the total number of data points for a given 

threshold	휂. The exceeding times over the threshold are denoted by 푡 , 푖 =

1, … ,푁 } and the observed rate of change at time  푡  denoted by		푟 . We 

postulate that the exceeding times and the associated rate of change (푡 , 푟 ) 

jointly form a two dimensional Poisson process with an intensity measure. If this 

process is stationary and there are no clusters asymptotically, the limiting form 

of the distribution of the process is a homogeneous Poisson with intensity 

												훬[(퐵 ,퐵 ) × (푟,∞)]
퐵 − 퐵

퐵 푍(푟: 휉,훼,훽)																																																							(4.6.0.1) 
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Where (퐵 ,퐵 ) is the interval under consideration and 

푍(푟: 휉,훼,훽) = 1 +
휉(푟 − 훽)

훼  

 푟 > 휂, 훼 > 0, 훽 and ξ are parameters and [∙] = 푚푎푥(푥, 0). The extreme value 

parameters are assumed to change periodically according to a random change 

point process. This intensity measure says that the occurrence of exceeding the 

threshold is proportional to the length of the time interval [퐵 ,퐵 ] and the 

probability is governed by a survival function similar to the exponent of the 퐶퐷퐹 

퐹∗(푟) in (4.4.0.1).  When 휉 = 0 the intensity measure is taken to be the limit		휉 →

0, that is 

															훬[(퐵 ,퐵 ) × (푟,∞)]
퐵 − 퐵

퐵 푒푥푝
−(푟 − 훽)

훼 																																													(4.6.0.2) 

(4.6.0.1) can be written as an integral of an intensity function 

																																							훬[(퐵 ,퐵 ) × (푟,∞)] = 휆(푡, 푧; 휉,훼,훽)푑푧푑푡
∞

														(4.6.0.3) 

where the intensity function is defined as 

휆(푡, 푧; 휉,훼,훽) =
1
퐷푔

(푧; 휉,훼,훽) 

and  

															푔(푧; 휉,훼,훽) =

⎩
⎪
⎨

⎪
⎧1
훼 1 +

휉(푧 − 훽)
훼

( )⁄

		푖푓		휉 ≠ 0

1
훼 푒푥푝

−푧(푧 − 훽)
훼 													푖푓	휉 = 0

																													(4.6.0.4) 
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Using the results of the Poisson Process, we can write down the likelihood 

function for the observed exceeding times and their corresponding times 

{(푡 , 푟 )} over the two dimensional space [0,푇] × (휂,∞) as 

							퐿(휉,훼	푎푛푑	훽) =
1
퐷 푔 푟 ; 휉,훼,훽 푒푥푝 −

푇
퐵 푍

(휂; 휉,훼,훽) 																				(4.6.0.5) 

The parameters ξ, 훼 and 훽 can be estimated by maximizing the logarithm of the 

likelihood function. Since the scale parameter 훼 is non-negative, we use 푙푛(훼) 

in the estimation. As shown in (4.5.0.2), the two dimensional Poisson Process 

model which employs the intensity measure (4.6.0.1) has the same parameters 

as those of Extreme Value distribution in (4.4.0.1). Given the upper tail 

probability	휃, with the (1 − 휃)푡ℎ quantile of the rates of change		푟 , the Value at 

Risk based Poisson point process becomes   

															푉푎푅 =
훽 −

훼
휉 1 − [−퐵푙푛(1− 휃)] 						푖푓	휉 ≠ 0

훽 − 훼푙푛[−퐵푙푛(1 − 휃)]																		푖푓	휉 = 0

																																(4.6.0.6) 

 

4.6.1 Use of explanatory variables 
 

Suppose that 	풙 = (푥 , … ,푥 )′ is a vector of 	푣 explanatory variables that are 

available prior to time	푡, like the volatility 휎  of		푟 . We postulate that the three 

parameters	휉, 훼 and 훽 are time varying and are linear functions of the 
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explanatory variables. Specifically when the explanatory variables are available 

we assume that 

휉 = 훾 + 훾 푥 + ⋯ , +훾 푥 ≡ 훾 + 훾 ′푥  

푙푛	(훼 ) = 훿 + 훿 푥 + ⋯ , +훿 푥 ≡ 훿 + 훿 ′푥  

훽 = 휗 + 휗 푥 + ⋯ , +휗 푥 ≡ 휗 + 휗′푥  

when the three parameters of the extreme value distribution are time varying, 

we have an inhomogeneous Poisson Process. The intensity measure becomes 

		훬[(퐵 ,퐵 ) × (푟,∞)] =
퐵 − 퐵

퐵 1 +
휉 (푟 − 훽 )

훼

⁄

		푖푓		푟 > 휂																					(4.6.1.1) 

The likelihood function of the exceeding times and rates {(푡 , 푟 )} becomes 

퐿 =
1
퐵푔 푟 ; , 휉 ,훼 ,훽 푒푥푝 −

1
퐵 푍(휆, 휉 ,훼 ,훽 )푑푡  

4.6.2 Validity Assessment 
 

When 퐸푉푇 model is fitted into a sample of extreme outcomes it necessitates the 

validation of the method in use before it can be used in extreme event 

forecasting. These diagnostic tests concentrate on evaluating whether the 

model assumptions are satisfied in practice and the tests are complementary to 

each other. 

Quantile - Quantile plot 

This plot is an assessment of the correspondence between the estimated model 

distribution and the data. It is a plausibility test for modeling excesses. If the 
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points form approximately a straight line this indicates that the model is 

correctly specified; de Rozario (2002). The plot consists of points 

																													 푋 , ,퐻 ,
푛 − 푘 + 1
푛 + 1

|푘 = 1, … , 푛 																																						(4.6.2.1) 

where 푋 ,  is the 푘	푡ℎ order statistic. In case of a concave curvature in the Q-Q 

plot the GDP underestimates the empirical distribution tails and the sample data 

has heavy tail. Convex curvature indicates that sample data has short tail. 

Mean Excess Plot 

The mean excess plot consists of points 

푢, 푒(푢) 푋 , < 푢 < 푋 ,  

where 푢 is the threshold and 푒(푢) is the mean excess function which is defined 

as 

																																																			푒(푢) = 퐸[푋 − 푢|푋 > 푢]																																														(4.6.2.2) 

The mean excess function describes the expected overshoot of a threshold 

given that it has been breached. In case of a GPD, (4.6.2.2) has the exact form 

																																																		푒(푢) =
휎 + 휉푢
1 − 휉 																																																																(4.6.2.3) 

The empirical estimate of the mean excess function is given by the sample 

mean excess function 

																																													푒 (푢) =
∑ (푋 − 푢)
∑ 퐼{ }

																																																				(4.6.2.4) 
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where 	퐼{ } is an indicator function that evaluates to unity if 푋 > 푢 and 0 

otherwise. (∙)  is as in (4.5.0.3). In the mean excess plot, the mean 

exceedances in the data are plotted against increasing threshold value. This 

plot should follow a straight line with slope 
( )

 and intercept	
( )

. 

Corresponding to 휉 = 0 is a horizontal line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 
 

CHAPTER FIVE  
 

5.0 RESULTS AND DISCUSSION 
 

5.1 Electricity demand distribution  

To understand the underlying electricity demand distribution in Kenya, the daily 

peak hour electricity demand data (in mega watts) from 1st January 2005 to 28th 

February, 2011 was obtained from Kenya Power and Lighting Company. Our 

sample comprise of 2250 observations. Figure 1 shows the density estimation 

of logarithmic daily peak hour electricity demand using the adaptive kernel 

method of Silverman (1986). Two estimates are presented; for low demand and 

for high demand. From Figure 1 it is evident that parametric modelling is 

rejected by this data set unless the data is modelled as a finite mixture of two or 

more distributions. 

Figure 2 shows that even after taking logarithm transformation the trend still 

persists. This signifies that the trend is non-deterministic and that the data used 

in this study shows a great deal of seasonality. This seasonality is attributed to 

the problem of electricity storage.  
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Figure 1:  The kernel probability density for low (……….) and high (           ) 
electricity demand at peak hour in megawatts. 

 

 

 

Figure 2: Time series plot for log transformed electricity data. 
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To introduce stationarity to the series we apply the analysis of Brockwell and 

Davis (1991) by using the difference operator	(1− 퐵)(1− 퐵 ). The first part 

(1 − 퐵) is the ordinary difference component ∇  and the second part (1− 퐵 ) is 

the seasonal difference component	∇ . After differencing, a seasonal difference 

of order 7 seems appropriate with significant autocorrelation coefficient  (퐴퐶퐹) 

at lags 7, 14 and 21. We obtain a new series	푌 = (1 − 퐵)(1 − 퐵 )푇 , which 

does not display any apparent deviations from stationarity as shown in Figure 3. 

 

Figure 3: Time series plot of twice differenced log transformed electricity data 

 

Residuals obtained from such detrended models, where economic time series 

data is regressed on time, can be interpreted as cyclical components in the 

context of business cycle theory. Such models can be used to estimate trend 

growth rates in historical context. 
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We apply the kernel regression estimation and local polynomial fitting methods 

to estimate the drift and diffusion of the daily rate of change of electricity 

demand at peak hour. Let 푌  denote the stationary daily rate of change. We 

model 푌  by assuming that it satisfies the continuous time stochastic differential 

equation 

푑푌 = 휇(푌 )푑푡 + 휎(푌 )푑푤  

For simplicity we use |푌 | as a proxy of volatility where,  휇(푌 ) is the 

conditional mean of 푌  given  푌  that is	휇(푌 ) = 퐸(푌 |푌 ). 

Figure 4 shows a local smooth estimate of 휇(푌 ).The estimate is 

approximately zero. However to better understand the estimate, Figure 5 shows 

this estimate on a finer scale. This estimate suggest that when 휇(푌 ) is 

positive 푌  is negative and vice versa. Thus the conditional mean is a 

decreasing function.  Figure 6 shows the estimate of the diffusion function of the 

daily rate of change of electricity demand (	휎(푌 )). The plot shows that the 

lower the demand the higher the volatility and the higher the demand the higher 

the volatility. Figure 7 shows this estimate 휎(푌 ) on a finer scale.  

To compare the volatility results with parametric model outputs, we find that of 

all seasonal first differenced parametric models, 퐴푅퐼푀퐴(1,1,2) × (1,1,1)  is the 

most parsimonious model. Likewise,퐺퐴푅퐶퐻(1,1), fits well the residuals, with 

the	0.1, 0.5 and 0.9 quantiles shown in  Figure 8, Figure 9 and Figure 10 

respectively. These plots are in agreement with the nonparametric results that 

the more the extreme the demand is the higher the volatility.    
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Figure 4 The smooth estimate of the drift function of the daily rate of change of 
electricity demand  

 

 
Figure 5 The estimate of the drift function of the daily rate of change of electricity 
demand   흁(풀풕 ퟏ) on a finer scale. 
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Figure 6 The estimate of volatility for the daily rate of change of electricity demand 
	훔(퐘퐭 ퟏ).   

 

 
Figure 7 The estimate of volatility for the daily rate of change of electricity demand on 

a finer scale 
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                  Figure 8 Residuals 0.1 quantile for the stationary series of electricity peak 
       demand under the GARCH model 

 

                    Figure 9   Residuals 0.5 quantile for the stationary series of electricity
         peak demand under the GARCH model 
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                   Figure 10 Residuals 0.9 quantile for the stationary series of electricity peak 
        demand under the GARCH model 

 

To try to answer the question if the estimated quantile regression relationships 

confirm to the location shift transformation that assumes that all the conditional 

quantiles functions have the same slope parameters, we estimate the quantile 

fits for electricity logarithm demand data. Figure 11 shows the estimated 

conditional quantiles at two opposite extremes; quantile (0.9) and quantile	(0.1). 

From Figure 11, we reject the assumption and conclude that electricity demand 

data has different slopes at different quantiles.  

Figure 12 shows the conditional quantile function of electricity demand obtained 

by inverting the estimated conditional cumulative distribution function using the t 

kernel estimator. 
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                   Figure 11 The estimated conditional quantiles of logarithm  
        electricity demand at 0.9 quantile and 0.1 quantile. 

 

 
            Figure 12 Conditional quantiles for electricity peak hour demand indicating
 three quantiles, 0.25 quantile, 0.50 quantile and 0.75 quantile.  
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It is apparent from Figure 12 that electricity demand distribution is 

heteroscedastic and poses heavy tails. To understand the evolution of 

electricity demand better, the logarithm daily rate of change in electricity 

demand is introduced as shown in Figure 13. This figure depicts clearly that 

there are more extreme positive rates of change than negative rates of change. 

This can be attributed to the gradual advancement in social economic dynamics 

in the economy over time.  Another important feature displayed in Figure 13 is 

that aberrant observations tend to emerge in clusters (persistence). We see that 

apart from year 2005 where the extreme rates of change are evenly distributed 

throughout, for the other years extremes are clustered. In 2006 clustering is 

between the months of August and December, in 2007 clustering is between 

July and October, in 2008 between July and September, in 2009 persistence is 

between October and November and in 2010 clustering is between the months 

of May and August. These persistent clustering can possibly be attributed to the 

market mechanism effects. The intuitive interpretation is that it is difficult to 

forecast future rates of change unless we understand more the market 

mechanism. 

 

5.2 Optimal bandwidth for electricity demand data 

To determine the optimal nonparametric smoothing parameter (bandwidth) we 

apply CV, GCV, AICc and RCP. Our results were obtained by writing program 

code in the R package (Kernsmooth). 
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            Figure 13  Daily rate of change of electricity demand at peak hour with 
 quantiles 0.25, 0.50 and 0.75  

 

Figure 14 shows the output of bandwidth determination of the logarithm daily 

rate of change of electricity demand at peak hour under Cross Validation. 

Figure 15 is the output under GCV while Figure 16 and Figure 17 are the 

bandwidth determination using AICc and RCP criterion respectively. 
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                          Figure 14 Bandwidth determination of logarithm rate of change of electricity 
         demand using Cross Validation 

 

 

 

                                  Figure 15: Bandwidth determination of Logarithm rate of change of  
            electricity demand using Generalized Cross Validation 
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                         Figure 16: Bandwidth determination of logarithm rate of change of  
          electricity demand using The Improved Akaike Information Criterion 

 

 

                     Figure 17 Bandwidth determination of logarithm rate of change of  
          electricity demand using The T-Criterion (RCP) 
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It is evident from the optimal bandwidth summary Table 3 that AICc overcomes 

the over fitting tendency and that the cross validation types are asymptotically 

equivalent. Li and Racine (2004) showed that both 	퐶푉 and GCV performs poorly 

due to its large sample variance even worse for dependent data. 

 

Table 3 Different optimal bandwidth for electricity demand data.  

Criterion Bandwidth Minimum value 

CV 2.8 0.004326 

GCV 2.8 0.004327 

AICc 2.5 -5.443 

RCP 2.7 -5.443 

 

 

5.3 Consumers response to change in fuel prices on electricity demand 

We refer to the fundamental factors that affect electricity demand and price 

formation as categorized in Table 3 

Table 3 Factors that have impact on spot electricity characteristics (Bunn and 
Karakatsani, 2003) 

Structural Effect Influencing factors 
1. Market Mechanism Fuel prices, demand polynomial 
2. Behavioral variables Lagged variables, price volatility 
3. Time Effect Daily, weekly, seasonal 
4. Efficiency variables Trading volume, availability of indices 
5. Market structure Margin, concentration of indices 
6. Non strategic uncertainties Demand forecast error 
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Consider the following model a realization of model (2.7.0.2); 

						푦 = 푐 + 푔 (푧 ) + 푔 (푧 ) + ⋯+푔 푧 + 푢 								푖 = 1, … ,푛																						 

where 푐  is a scalar parameter, 푧  is a univariate continuous variable and 

푔 (∙); 		푙 = 1, … ,푞 are smooth functions. Let 푦  be the logarithm change in 

electricity demand, 푧  be the logarithm of the previous day electricity demand 

and  푧  be the logarithm of the previous day price of fuel (diesel). We wish to 

find the impact of the explanatory variables to the rate of change of electricity 

demand. 
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Figure 18 Kernel regression estimate of a two dimensional dependent variable on 
an explanatory variable: previous day demand and previous day fuel prices on the 
daily change in electricity demand 
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Figure 18 shows a kernel regression estimate of daily change in electricity 

demand (푐푑푒푚) on previous day demand (푝푑푒푚) and the previous day fuel 

prices	(푝푝푟푖푐푒). Taking these explanatory variables separately, we have Figure 

19 which shows the impact of the previous day demand of electricity on the 

current daily rate of change of electricity demand. Figure 20 shows the impact 

of fuel prices on the daily rate of change of electricity demand. 

 

                          Figure 19 Contribution of the previous day demand of electricity on the 
               daily rate of change of electricity demand 

 

Figure 20 shows that the cross elasticity of demand which measures the 
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                              Figure 20 Contribution of fuel prices on the daily rate of change of   
         electricity demand 

 

5.4 Modeling time dependencies 

Due to the nature of impact of fuel prices on electricity demand, we focus on the 

distribution of daily fuel price changes and the associated extreme quantiles by 

fitting a 	퐸푉푇 based model to observed price data. We focus only on the positive 

tail of the distribution. Since the price changes are so large, we chose 

logarithmic changes instead of simple net returns	(푃 − 푃 ) 푃⁄  . A problem 

with using simple returns is that prices are bounded from below and that this 

makes the return distribution skewed for large positive and negative returns. 

The data consists of 912 daily prices from July 1, 2006 to June 20, 2009 (Data 

from Kenya National Oil Corporation).  
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 Figure 21 Time series plot of the daily fuel prices from July, 2006 to November 2009, 
while below is the corresponding daily rate of change in fuel prices. 
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                 Figure 22 Fuel price changes (%) superimposed on the time series trend of 
 fuel prices 
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     Table 5 Descriptive statistics of daily log fuel price changes  

Mean  Standard deviation Skewness Kurtosis  Ljung P-value  
7.958483e-05 4.573012 -0.2899951 23.3798 2.2e-16 

 

Table 5 reports some statistics on the price changes series. The high volatility is 

confirmed as evidenced by the high standard deviation and the very high 

excess kurtosis, also the very small p-value of the Portmanteau test (Ljung) 

implies that we have enough evidence to reject the null hypothesis that the 

series are uncorrelated. This together with a visual inspection of Figure 22 

indicates a high degree of volatility clustering (퐺퐴푅퐶퐻) effect.  

We extend the classical unconditional extreme value approach by first filtering 

the data to capture some of the dependencies in the fuel market and there after 

applying ordinary extreme value techniques. In this way we are able to get 

better tail estimates in sample, but more importantly we are able to get better 

predictions for future extreme price changes. In additional the independent and 

identical assumption behind the  퐸푉푇 based tail quantile estimator is less likely 

to be violated. In order to prefilter the time series we chose a combined 

autoregressive moving average (퐴푅푀퐴) and the generalized autoregressive 

conditional heteroscedastic (퐺퐴푅퐶퐻) model due to the strong and significant 

volatility clustering in the fuel market. By combining this 퐴푅푀퐴 model with the 

simplest 퐺퐴푅퐶퐻(1,1) model we shall explicitly model the conditional volatility as 

a function of past conditional volatilities as shown by Bollerslev (1986) and 
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Engle (1982). We hope to capture the most important dependencies in the rate 

of change series. Thus we have   

푟 = 푎 + 푎 푟 − 푏 푒 + 푒  

																																													휎 = 휑 + 휑 푒 + 휑 휎 																																																										(5.4.1.1) 

Where		휎  is the conditional variance of		푒 . 푒 = 휎 휀 	, with 	휀 ~	푁(0,1) or student t-

distributed i.i.d innovations.  In order to introduce the extreme value theory to 

the estimation of extreme tail quantiles, the first step is to model the residuals 푒  

from the normal (퐴푅푀퐴− 퐺퐴푅퐶퐻) model with the 푃푂푇 model. Since the 

residual series is much closer to being identical and independent than the 

original series, it is straight forward to apply	퐸푉푇. Let the unconditional 퐸푉푇 

quantiles of the residual distribution be	훼 = 푞 , the second step is to calculate 

the conditional tail quantiles, 푞 ,   of our original rate of change distribution as 

																																								푞 , = 푎 + 푎 푟 − 푏 푒 + 휎 훼 																																				(5.4.1.2) 

where 

																																																훼 = 푢 +
훼
휉

푛
푁 푝 − 1 																																									(5.4.1.3) 

 In Implementing the POT method we fit the GPD to observations in the residual 

series above a certain high threshold.  We rely on a threshold that is 

approximately 5.5% following the recommendations from the simulation study in 

McNeil and Frey (2000) and as shown in the mean excess function in Figure 

23. Too low threshold value and the asymptotic theory break down. Too high 
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threshold value and one does not have enough data points to estimate the 

parameters in the excess distribution.  

 
         Figure 23 Mean excess function plot of negative fuel price change 

 

In Figure 23, the downward trend shows thin tailed behavior whereas a line with 

zero slope show an exponential tail. An upward sloping plot indicates heavy 

tailed behavior. The mean excess plot is linear around  푢 > 0.01 a sign of 
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From table 6, the autocorrelation in the raw rate of change data has actually 
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Table 6 AR-GARCH parameters, statistics of the standardized residuals as well as 
GPD parameters. 

AR-GARCH  parameters  
a0 *** 
a1 -0.0472(0.0576)*** 
b1 -0.6168(0.0263) 
휑0 × 10-3 1.0576(0.2733) 
휑1 0.14697(0.012) 
휑2 0.8758(0.0090) 
Standardized residuals descriptive statistics 
Mean 0.03256153 
Standard deviation 1.011791 
Skewness 0.0012234 
Kurtosis 10.60099 
Ljung P-value 0.97 
GPD parameters  
ξ 0.04635(0.0393) 
α 0.611095(0.0493) 
u 0.055 
Data Source:  Kenya National Oil Corporation. *** Not significant parameter estimates. Figures in 
parentheses are standard errors. 
 

From Table 7, with 5% probability, the daily rate of change of fuel price could be 

as low as −0.624% and given that the rate of change is less than −0.624% the 

average rate of change value is	−1.404%. With 1% probability, the daily rate of 

change of fuel price could be as low as −1.3818% and given this rate of 

change, the average rate of change value is	−2.1870%. 

  
Table 7:  Risk measures of fuel prices computed via Peak over threshold at 5%, 1% 
and 0.1% probability 

P quantile Shortfall 
0.95 0.624 1.404 
0.99 1.3818 2.1870 
0.999 3.2574 4.7766 
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CHAPTER SIX  

6.0 SUMMARY, CONCLUSION AND RECOMMENDATION  
 

6.1 Summary   

This study has identified that the distribution of electricity demand in Kenya has 

continued to evolve as a markedly multimodal, with a stochastic trend. Changes 

in fuel prices have some impact on electricity demand and in the long run the 

cross elasticity for all classes of electricity consumers is much larger in the long 

run than in the short run. From this study, electricity is continuously becoming a 

necessity rather than a luxury since the cross elasticity in the long run is 

inelastic. Aberrant observations in electricity demand data tend to occur in 

clusters due to market mechanism factors which include fuel prices and 

demand polynomial.  It has also been found that cross validation and 

generalized cross validation are asymptotically equivalent as methods of 

determining the smoothing parameter of demand data and they do perform 

poorly due to the large sample variation and even worse for dependent data. 

The results on how 퐸푉푇 can be used in the fuel market risk management has 

also been given and the foundation of 퐸푉푇  has been considered in details. It 

has been found that with 0.1% probability the daily rate of change of fuel prices 

would be as low as -3.2574% and given that the average rate of change is less 

than -3.2574 the rate of change value is -4.7766% . This study serves as a 

literature review on extreme energy modeling and on market risk management. 
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Thus the reference in this work provides a collection of relevant information 

which give additional insight to the theory and application of	퐸푉푇. 

 

6.2 Conclusion    

The energy market is more complex in terms of demand and price formation 

than other more conventional markets. The complexity arises from the fact that 

in practice utility like electricity cannot be stored and the demand formation is 

affected by several other factors such as the previous day demand and fuel 

price patterns which are not standard across the markets of which its effects are 

clear. The results are interesting for a number of reasons 

1. Identification is nonparametric and may be achievable at some quantiles 

thus the results offers a possibility of extracting information about the 

distribution of exogenous impact across different quantiles of the 

marginal distributions of the observable variables that drive the structural 

model. 

2. The exogenous impact function can be defined and identified in contexts 

especially in financial markets in which it is attractive to construct models 

with non existence low order moments. 

We may conclude that sequential nonparametric regression can be used in 

assessing trends in shortfalls on a risky demand rather than relying on 

emphasis disclosed by researchers. This could be used as an additional 

analytical tool for investors to know more about demand. 
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6.3 Recommendation   

We recommend to regulators and investors venturing into the energy and 

energy related industries, to first use this method to consider the risk associated 

with the venture so that they can hedge appropriately. This study points on the 

future research to lay emphasis on how the goodness-of-fit of this model can be 

achieved. This includes among others the multivariate extreme value theory 

achievable through marginal dependencies using marginal distribution (Copula). 

Future research should quantify on the set of factors that affect fuel price 

formation. These factors include economic fundamentals, production 

constraints, trading inefficiency and market design effects which may be 

incomplete. Lastly the occasional congestion problems in the power net works 

need further research on how they can be modeled. 
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APPENDICES  

Appendix A.1    Bandwidth determination codes 

library(KernSmooth) 

 kscv1=function(xx,yy,nd,bw,ntrial) 

     {kscvgcv=function(bw, xx, yy) 

      {nd <- length(xx) 

         bwsplus <- bw 

         fit.ks <- ksmooth(xx, yy, "normal", bandwidth = bwsplus) 

         res <- yy - fit.ks$y 

         dhat1 <- function(x2, bw) 

      { 

      nd2 <- length(xx) 

       diag1 <- diag(nd2) 

         bwsplus <- bw 

      dhat <- rep(0, length = nd2) 

      for(jj in 1.:nd2) { 

        y2 <- diag1[, jj] 

         fit.ks <- ksmooth(x2, y2, "normal", bandwidth = bwsplus) 

      dhat[jj] <- fit.ks$y[jj] 

      } 

      return(dhat) 

      } 
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         dhat <- dhat1(xx, bw) 

         trhat <- sum(dhat) 

         sse <- sum(res^2) 

 sigma<-log(sse/nd) 

rice<-sigma-log(1-((2*trhat)/nd)) 

  AICc<-sigma+(((1+trhat)/nd)/(1-((trhat+2)/nd))) 

  return(AICc) 

       } 

      cvgcv<-lapply(as.list(bw),kscvgcv,xx=xx,yy=yy) 

      cvgcv<-unlist(cvgcv) 

      return(cvgcv) 

      } 

 Appendix A.2    Partial plots codes 

bw.all=npregbw(cdem~pdem+pprice,regtype="ll",bwmethod="cv.aic") 

 model.np<-npreg(bws=bw.all) 

plot(model.np,plot.errors.method="bootstrap",plot.errors.boot.num=100,plot.errors.type

="quantiles",plot.errors.style="band",common.scale=FALSE) 

 

Appendix A.3    Local polynomial regression quantiles codes 

"lprg" <- function(x,y,h,m,theta=.50) 

      { 

         xx <- seq(min(x),max(x),length=m) 

         fv <- numeric(length(xx)) 

         dv <- numeric(length(xx)) 
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         for(i in 1:length(xx)) 

         { 

         z <- x - xx[i] 

         wx <- dnorm(z/h) # kernel 

         r <- rq(y ~ z,weights=wx,tau=theta,ci=FALSE) 

         fv[i] <- r$coef[1] 

         dv[i] <- r$coef[2] 

         } 

         list(xx=xx,fv=fv,dv=dv) 

        } 

  Xx <- 1:2241 

  fit <- lprg(Xx, Yt,h=2.5,m=500,theta=0.1) 

 win.graph(width=4.85,height=3.5,pointsize=8) 

  plot(1:length(Yt),Yt,type="l",xlab="Time",ylab=expression(Y[t]),lty=3) 

  lines(fit$xx,fit$fv,col=2,lty=3) 

  plot(1:length(Yt),Yt,type="l",xlab="Time",ylab=expression(Y[t]),lty=3) 

  lines(fit$xx,fit$fv,col=2) 

  fit1 <- lprg(Xx, Yt,h=2.5,m=500,theta=0.5) 

  plot(1:length(Yt),Yt,type="l",xlab="Time",ylab=expression(Y[t]),lty=3) 

  lines(fit1$xx,fit1$fv,col=3) 

  plot(1:length(Yt),Yt,type="l",xlab="Time",ylab=expression(Y[t]),lty=3) 

  lines(fit1$xx,fit1$fv,col=4) 

  fit2 <- lprg(Xx, Yt,h=2.5,m=500,theta=0.9) 

  plot(1:length(Yt),Yt,type="l",xlab="Time",ylab=expression(Y[t]),lty=3) 
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  lines(fit2$xx,fit2$fv,col=2) 

 

Appendix A.4   PROOF  

Proof of (2.4.4.2)  

푚(푋 ) = 푚(푥)푓 (푥) + 푚′′(푥)
1
푛

(푋 − 푥)퐾 (푋 − 푥)

( )

+
1
2

1
푛 푚′′(푥 )(푋 − 푥) 퐾 (푋 − 푥)

( )

 

then, 

퐸[퐽 (푥)] = 퐸[(푋 − 푥)퐾 (푋 − 푥)] 

= (푢 − 푥)퐾 (푢 − 푥)푓(푢)푑푢 

= ℎ 푢퐾(푢)푓(푥 + ℎ푢)푑푢 

= ℎ 푓 ′(푥)휇 (퐾) + 표(ℎ ) 

푛ℎ	푉푎푟 퐽 (푥) = 푂(1) 

퐸[퐽 (푥)] = 퐸[푚′′(푥 )(푋 − 푥) 퐾 (푋 − 푥)] 

= ℎ 푚′′(푥 + 휃ℎ푢)푢 퐾(푢)푓(푥 + ℎ푢)푑푢 

= ℎ 푚′′(푥)휇 (퐾)푓(푥) + 표(ℎ ) 

and  푉푎푟	 퐽 (푥) = 푂(1 푛ℎ⁄ ),  

therefore  퐸{퐽 (푥)} = ℎ 푚′′(푥)휇 (퐾)푓(푥) + 표 (ℎ ) 
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hence 

퐼 = 푚(푥) + 푚′(푥)퐽 (푥)/푓 (푥) +
1
2 퐽

(푥)/푓 (푥) 

= 푚(푥) +
ℎ
2 휇 (퐾)[푚′(푥) + 2푚′(푥)푓 ′(푥)/푓(푥)] + 표 (ℎ ) 

By the fact that	푓 (푥) = 푓(푥) + 표 (1), 

퐵 (푥) =
ℎ
2 휇 (퐾)[푚′′(푥) + 2푚′(푥)푓 ′(푥)/푓(푥)] 

                                                                                                                                                   ∎ 

 


