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ABSTRACT

This research project primarily describes the modeling of mechanical and hydraulic

dynamics of an excavating mechanism previously designed to be used with small

tractors, which are fabricated in the Engineering Workshops of Jomo Kenyatta Uni-

versity of Agriculture and Technology. The developed models were then used to

optimize the hydraulic system design, and also to simulate the open loop transient

and steady state responses of the system.

In this study, bond graph method was chosen as the modeling method because,

firstly, it is a domain-independent graphical method of representing the dynamics of

physical systems. Therefore, systems from different engineering disciplines can be

described in the same way. Secondly, the available literature shows that the method

being relatively new, has not been thoroughly applied to model the dynamics of

nonlinear systems such as excavators. The bond graph method was first reviewed,

and then used to develop a complete dynamic model of the excavator by modeling the

hydraulic actuation system and the manipulator linkage separately. The two models

representing different domain dynamics were coupled to a complete model using

appropriate manipulator jacobians which were treated as Modulated Transformer

Elements. The bond graph method was found to reduce significantly the number of

recursive computations performed on a manipulator for a mechanical dynamic model

to result. This indicated, that bond graph method is more computationally efficient

than the Newton-Euler method in developing dynamic models of manipulators.

The mechanical bond graph model of the manipulator was verified by comparing

the joint torque expressions of a two link planar manipulator to those obtained by

using Newton-Euler and Lagrangian methods as analyzed in robotic textbooks. The

expressions were found to agree indicating that the model captures the aspects of

xxiii



rigid body dynamics of the manipulator. Also the bond graph model of the hydraulic

system was verified by comparing the open loop state responses to those of an ODE

model which has been developed in literature based on the same assumptions. The

results were found to correlate very well both in the shape of the curves, magnitude

and the response times, thus indicating that the developed model represents the

hydraulic dynamics of a valve controlled cylinder.

Based on the model developed, actuator sizing and valve sizing methodologies were

developed and used to obtain the optimal sizes of the pistons and spool valve ports

respectively. It was found that using the pump with the sized flow rate capacity, the

engine of the tractor is able to power the excavating mechanism in digging a sandy-

loom soil. The causal bond graph model of the excavator was expanded into block

diagrams and simulated on MATLAB/SIMULINK to determine the transient and

steady state responses of the system. From the responses obtained, the model devel-

oped was found to capture the inter-component interactions and also the interaction

between the hydraulic and mechanical dynamics. Therefore it can be concluded that

the model developed can be used to design control laws necessary for controlling the

dynamics and motions of the excavating manipulator.

xxiv



CHAPTER 1

INTRODUCTION

1.1 Background Information

The excavating mechanism designed in [1] will be used with the small tractors which

are fabricated in the Engineering Workshops of Jomo Kenyatta University of Agri-

culture and Technology in digging medium-height trenches for small scale farmers.

When the mechanism is attached to the tractor, a small excavator will be obtained

whose common structure consists of a swing body and a front manipulator as shown

in Figure 1.1. The boom, arm and bucket will be the three main links compris-

ing the front manipulator of the excavator, and their motions together with the

swing motion will be the most frequent motions of the excavator during the digging

operation.

Since digging is typically a planar motion, only the last three degrees of freedom,

that is the bucket, arm and boom motions are modeled. The boom, arm, and

bucket are controlled by extending or retracting the hydraulic actuators across each

joint. A pressure compensated, axial piston pump will provide hydraulic power

to the excavating mechanism at a constant pressure. A constant pressure system

has a mechanism to keep constant pressure supplied by the pump, while varying

the flow rate to one or more actuators. A small pilot flow is maintained from the

pump through the closed center control valve to the pump compensator. This pilot

flow forces the pump to deliver little flow at a minimum pressure in a stand-by

position [2]. A part of the hydraulic circuit which controls the boom, arm and

bucket links is shown in Figure 1.2.
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Figure 1.1: Schematic drawing of a part of assembled excavator

Assessment of dynamical performance of an engineering product is important prior

to its manufacture in order to optimize and verify design. Currently, computer sim-

ulations of dynamic behavior of an engineering system is indispensable in the design

of a new product and has replaced manufacturing of prototypes. In simulation of

a systems dynamic behavior, a model which captures the essential dynamic aspects

of the system is required. The product whose dynamic behavior will be simulated

to assess some design aspects in this project is an excavator, which has a manipu-

lator directly driven by hydraulic actuators. Since the hydraulic system controlling

the manipulator has its own dynamics due to compressibility of hydraulic oil, and

has highly nonlinear characteristics due to spool valve dynamics, it is necessary to
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Figure 1.2: Schematic drawing of a part of hydraulic circuit of the excavator

consider its effect on the overall dynamic behavior of the excavator.

The dynamical behavior of 3-dimensional mechanical systems and which consist of

hydraulic components are hard to predict since they are made of sub-systems from

two different engineering domains, i.e., hydraulics and mechanics [3]. Therefore a

modeling technique which takes into account the interaction of various engineering

domains is of great help in the development of a model which is simple enough to

understand, compute and analyze, and at the same time detailed enough to capture

all essential dynamic aspects within a particular operating condition.

1.2 Problem Statement

A dynamic model which incorporates both the mechanical and hydraulic dynamics

is essential for dynamic-related studies of an excavator. Therefore a simulation en-

vironment for an excavator in which not only the mechanical dynamics, but also the
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hydraulic actuator dynamics can be considered, plays an essential role in studying

the overall dynamic behavior of the excavator.

Most researchers in the area of modeling of the interacting hydraulic and mechanical

dynamics of the excavators have utilized two different modeling techniques, one for

mechanical dynamics and the other for hydraulic dynamics [4, 5]. The two models

are then coupled to form a complete model for simulation. On introduction and

development of bond graph modeling technique, the problem of modeling a multi-

domain system has been solved, and now a model representing several sub-models

from various engineering disciplines can be simulated using one simulation environ-

ment such as MATLAB/SIMULINK, 20-SIM, CAMP-G, etc.

The available literature shows that bond graph modeling of the excavator which is a

highly nonlinear system has not been studied thoroughly. Several researchers [6, 7]

have used bond graphs to model the dynamics of excavator due to the interacting

mechanical and hydraulic dynamics, by putting emphasis on the boom motion.

Therefore, there is need to simulate simultaneous motions of the swing, boom, arm

and bucket so as to realize full excavating motion using bond graphs. Up to now no

documented evidence is available to show that this has been achieved.

Moreover, the compressibility of the hydraulic fluid has been neglected in the previ-

ous works on bond graph modeling of the excavator dynamics. This has been done

purposely to simplify the bond graph model of the excavator although the dynamic

performance of the hydraulic system is not fully addressed.

In this research work, the mechanical and hydraulic dynamic models for the boom,

arm and bucket motions will be developed using bond graphs, while at the same
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time considering the compressibility of hydraulic fluid in the hydraulic cylinders.

1.3 Objectives

The principal objective of this research project is to develop dynamic models of an

excavator, which will be used to size the hydraulic components and simulate the

transient responses due to the interacting mechanical and hydraulic dynamics. In

pursuing this principal objective, the following will be accomplished;

1. To develop first order bond graph model that includes the interactive mechan-

ical and hydraulic dynamics by;

• Modeling the mechanical dynamics of the manipulator linkage.

• Modeling the hydraulic dynamics of the hydraulic system used to actuate

the manipulator joints.

• Integrating the two models using the appropriate manipulator jacobians.

2. To perform inverse dynamics on the model developed in 1 above in order to

determine the optimal sizes of the pistons and spool valves for the hydraulic

system actuating the manipulator links.

3. To perform forward dynamics on the model developed in 1 above in order to

simulate the transient and steady state responses of the system.

1.4 Organization of the Thesis

A short description of the chapters following this introduction is presented below,

1. In Chapter 2, a brief review of the available literature on dynamic modeling
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of excavators, modeling manipulator dynamics and modeling the bucket-soil

interaction is presented.

2. The bond graph model representing the mechanical dynamics of the manipu-

lator is developed in Chapter 3. The model is developed by representing the

kinematic relationships between the joint variable time rates and the trans-

lational velocities of the links’ centers of mass in bond-graphic form, while

considering the links’ momenta and weights as the bond graph elements. The

validity of the developed model is verified in this chapter.

3. The bond graph model representing the hydraulic dynamics of the actuation

system of the manipulator is presented in Chapter 4. The model is developed

by modeling the pump, spool valves and hydraulic cylinders separately, and

then assembling the sub models to complete models representing the dynamics

of valve controlled cylinders. Validation of the developed model, and also a

simplified model of the inter-actuator interaction are also presented in this

chapter.

4. Chapter 5 presents the overall computational model of the excavator, which

is obtained by coupling the mechanical and hydraulic models into a complete

model using appropriate manipulator jacobians. The derivative causality re-

sulting in the model is solved in order to obtain a model which can be solved

numerically.

5. The hydraulic system design is analyzed in Chapter 6. Quintic polynomial tra-

jectory is planned for the manipulator motion, and then by performing inverse

dynamics on the developed model, the joint torques required to accomplish the
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planned motion are determined. Actuator sizing and valve sizing methodolo-

gies are developed and used to obtain the optimal sizes of the pistons and spool

valve ports respectively. Also the joints power requirements are presented and

then used to determine the flow rate capacity of the hydraulic pump.

6. The transient and steady state open loop responses of the excavator model are

simulated in Chapter 7 to check if the developed model captures the interactive

dynamics of the excavator. The bond graph model is expanded into block

diagrams which are simulated in MATLAB/SIMULINK.

7. Chapter 8 presents a summary of the main findings of this study as well as

areas requiring future attention.
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CHAPTER 2

LITERATURE REVIEW

2.1 Dynamic Modeling of Excavators.

Most of research work on excavator dynamics has primarily considered the ma-

nipulator dynamics [8–10]. Only a few researchers have considered the interactive

hydraulics and mechanical dynamics of excavators [4, 5, 11]. The complication of

coupled dynamics and the computational difficulty have prevented the progress of

research in this field [12]. Koivo et al. [8] developed a dynamic model of an excavator

using Newton-Euler equations to each link in succession, and used this model to de-

sign a proportional-differential controller that made the bucket to track a specified

trajectory. The model only considered the mechanical dynamics of the manipulator

but did not consider nonlinearities of the interacting hydraulic dynamics.

3-Dimensional mechanical systems consisting of hydraulic components like excava-

tors, are difficult to simulate. Usually two different modeling techniques, one for

mechanical dynamics and the other for the hydraulic dynamics, have been used and

then coupled to a complete model which is then simulated using a single software.

Cheol-Gyu et al. [4] presented a simulation environment for excavator dynamics by

coupling the MSC.ADAMS mechanical dynamic model of the excavator and the

Ordinary Differential Equation’s hydraulic system model, and then simulating the

overall model on SIMULINK. Beater et al. [5] demonstrated how to model the dy-

namics of an excavator by modeling the mechanical part using Modelica language,

and modeling the dynamics of the hydraulic system using HYLIB language, then

integrating the two models and simulating the output model using DYMOLA 2003

simulation software. Nguyen [11] modeled the mechanical dynamics of the excavator
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using Newton-Euler method and the hydraulic dynamics using ordinary differential

method.

The integration of models from different domains have proved to be a complex

and time consuming task, because, although powerful simulation libraries exist,

they are generally based on different modeling languages, almost invariably not

compatible [3]. Also, the integration of two modeling techniques leads to unnecessary

numerical problems and the resulting model may contain fragile interfaces which

affect the simulation results.

The bond graph method was established as a new approach to model, analyze and

control various dynamical systems by Professor Henry Paynter [13]. Through bond

graph modeling technique, the problem of coupling several models from different

engineering systems has been solved, and now a model representing several sub-

models from various engineering disciplines can be simulated using one simulation

environment such as MATLAB/SIMULINK, 20-SIM, CAMP-G, et cetera. Since

Prof. Paynter introduced the basic concept of bond graph modeling, bond graphs

have been a topic of research or are being used in research on modeling and simu-

lation of dynamic behavior of physical systems.

Margolis et al. [14] contributed to the field of bond graphs by carrying out a compre-

hensive research, the outcomes of which are applicable to areas of robotics, cranes,

excavators, wheel loaders, and space vehicles. The study investigated the dynamics

of two arms, with articulated joints and actuated on the joint considering actuation

unit dynamics, rigid body dynamics and bending vibrations all together.

Margolis et al. [7] used bond graph method to develop a complete pitch/plane model
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of a backhoe considering the boom dynamics, the hydraulic dynamics of the boom

cylinder and valve, the chassis/cab mountings and the control stick dynamics. Using

the parameters of a medium size back hoe in simulating the bond graph model,

the authors demonstrated the instability of the backhoe in consideration. Also

Krishnaswamy [6] modeled the boom motion of an excavator to study the passivity

of hydraulic systems. Therefore a lot of emphasis has been focused on the boom

motion, but in this research work, three excavator motions, i.e, boom, arm, bucket

motions were considered.

2.2 Manipulator Dynamics

In order to design, improve performance, simulate the behavior and finally control

a system or plant, it is necessary to obtain it’s dynamics. To develop the dynamics

of a manipulator, a kinematic model of the manipulator is required first. The kine-

matic modeling is done first by attaching coordinate frames to every link. The usual

convention applied to attach frames in the links of a manipulator is the Denavit-

Hartenberg procedure [15]. The dynamics of a manipulator can be obtained in

various ways namely; using Newton-Euler dynamic formulation, Lagrangian formu-

lation, Kane’s method, and others [16,17].

2.2.1 Newton-Euler Method

The Newton-Euler method is based on Newton’s second law of motion, with it’s

rotational analog called Euler’s equation. It describes how forces and moments are

related to the accelerations. In the iterative Newton-Euler algorithm, the position,

velocity, and acceleration of the joints are calculated using forward recursion, that

is, from the base to the end effector. With these as inputs and assuming that the
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mass properties of the links and any externally acting forces are known, the joint

torques required to cause this motion are calculated using backward recursion, that

is, from the end effector towards the base. This algorithm is based on a method

published in [18].

2.2.2 Lagrangian Method

The overall Newton-Euler method is based on a force-balance approach to dynamics.

On the other hand, Lagrangian formulation is energy-based approach to dynamics.

The classical Lagrangian formulation for manipulator dynamics is inefficient, al-

though Lagrangian models seem to be the most prevalent in the literature because

they provide the most intuitive insight into the dynamics of the system (energy),

but at the expense of computational efficiency [9].

The computational inefficiency of Lagrangian method is due to the use of Lagrangian

multipliers. The introduction of Udwadia-Kalaba (UK) formulation [19], has im-

proved the method’s numerical efficiency. A fundamental step of the Udwadia-

Kalaba formulation is the computation of the Moore-Penrose generalized inverse or

pseudoinverse matrix [20].

The efficiency of Newton-Euler method is due to two factors; the recursive structure

of the computation, and the representation chosen for the rotational dynamics. Re-

cursive Lagrangian dynamics for rigid manipulators has been discussed previously

by Hollerbach [21] and for flexible manipulators by Book [22]. A general algorithm

is developed to model the dynamic equation of both rigid and flexible arms [23], but

the equation is generally larger than that for rigid links.
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2.2.3 Kane’s Method

This method arises directly from d’Alembert’s principle expressed in Lagrangian

form. It is applicable to systems subjected to holonomic and simple nonholonomic

constraints. It has the advantages of Newton’s mechanics formulation without the

corresponding disadvantages. When used without Lagrange multipliers, it automat-

ically eliminates non-working constraint forces, leading to a system of first-order

differential equations of minimum dimension. It is also suitable for formulating the

linearized equations of motion [24].

2.2.4 Bond Graph Method

The three methods; Newton-Euler, Lagrangian and Kane’s methods described, tend

to hide the physical interactions between the elements involved [25]. The relatively

new bond graph modeling technique, has been proposed to successfully model the

dynamics of manipulators and mechanisms. It is a pictorial representation of the

dynamics of the system and clearly depicts the interaction between the elements

along with their cause and effect relationship. Since bond graph method is based

on the interaction of power between elements, it can be used to model multi-energy

domains also, for example the actuator system of the manipulator which may be

electrical, pneumatic, hydraulic or mechanical.

The concept of bond graphs was originated by Paynter [13]. The idea was further

developed by Karnopp and Rosenberg in their textbooks [26–28], such that it could

be used in practice. By means of the formulation by Breedveld [29] of a framework

based on thermodynamics, bond graph model description evolved to a systems the-

ory. More information about bond graphs can be found in [26–34] from which the
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theory was obtained, reviewed and summarized in Appendix A.

For the modeling of mechanical manipulators and mechanisms, the bond graph

model can be developed based on kinematic relationships between the time rates

of joint variables and the generalized cartesian velocities (translational and angular

velocities). It is not necessary to have higher order time rates of variables involved,

that is translational and angular accelerations. This is due to the fact that when

the kinematic relationships are represented in bond graph form, a dynamic model

results since the bonds with the translational velocity also carry the force as the

corresponding effort variable, while the bonds with the angular velocity also carry

the torque as the effort variable.

The Bond Graph method can be used to obtain more intricate information such

as the power required to drive each joint actuator, or the power interaction at the

interface with the environment. Such information can also be used to study the

stability of the manipulator system during contact interaction with the environment.

Modifications and additions to the system can be easily incorporated by connecting

suitable bond-graphic sub-systems to its existing bond graph.

2.3 Modeling Soil-tool Interaction in Excavators

An understanding of the soil characteristic properties, the resistance to soil cutting,

and the effects of working conditions on the cutting force is required in order to model

soil-tool interactions. The soil tool relationships suggest that the specification of an

earthmoving process must include not only the magnitudes of the forces involved,

but also how such forces are generated, on what parameters they depend, how they

are applied to the earth, and how they may be estimated under dynamic conditions.
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A larger literature exists on the estimation of resistive forces that act on a tool

as it moves through the soil. A group of researchers has attempted to estimate

cutting resistance based on empirical results for various types of earthmoving ma-

chines [35, 36]. Various indices are suggested based on the configuration of these

machines and resistive forces can be roughly estimated by numerically integrating

simple equations.

Another body of work, attempts to estimate cutting forces based on first principle

mechanics. Motivated largely by the need to estimate the forces experienced by

tools used to perform tillage, the ideas in this work come from the civil engineer’s

load-bearing equations for foundations [37]. These models were extended by sev-

eral researchers [38,39] who recognized the similarity to the case of a blade moving

through soil. These researchers have added provisions to account for a variety of

tool geometries and orientations. The resultant models use parameters of soil-soil

friction, soil-tool friction, soil density, tool depth and tool orientation to obtain

order of magnitude predictions of the resistive forces developed in the use of agri-

cultural tools. Based on this work, detailed models of the bucket-soil interaction in

excavators are covered in [10, 11]. Nguyen [11] developed a model and designed an

adaptive observer to observe the disturbance force acting on the excavator due to

the bucket-soil interaction. By using the force equilibrium and fundamental earth-

moving equation (FEE) in soil mechanics as described in [38], Cannon [10] developed

an analytical model to determine the force F exerted by the excavator bucket to

the soil, by modifying the FEE for a flat blade moving horizontally as given in [40]

to account for the material being retained in the bucket. The author went ahead

to come up with an empirical model based on a linear combination of terms found
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in the analytical model, and implemented a means of estimating the soil conditions

for both model types. The models were found to estimate the resistive forces with

good accuracy.

2.4 Summary

The available literature shows that a lot of emphasis on modeling the dynamics of

excavators has been focused on the mechanical dynamics of the manipulator, with

less attention to the interactive hydraulic and mechanical dynamics. This has been

attributed to the computational difficulty and the complication of coupled dynamics

which result when models from different modeling techniques one for mechanical

and the other for hydraulic dynamics are integrated together for simulation. In

this research, models of the hydraulic and mechanical dynamics of an excavator are

developed using one modeling technique, that is, bond graphs, hence eliminating

the problem of coupling models from different techniques.

The literature also shows that the mechanical dynamics of excavators have been

modeled using analytical methods such as Newton-Euler, Lagrangian, Kane’s meth-

ods, which tend to hide the physical interactions between the elements involved. In

this research, bond graph method which clearly depicts the interaction between the

elements along with their cause and effect relationships is employed to model the

mechanical dynamics of the manipulator.
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CHAPTER 3

MODELING THE MANIPULATOR DYNAMICS

3.1 Bond Graph Model Development

A bond graph model representing the mechanical dynamics of the excavating ma-

nipulator is developed based on the following assumptions.

• The dynamic model for the excavator is presented in digging mode, that is,

the swing angle θ1 of the first link is held constant such that θ̇1 = 0, as shown

in Figure 3.1. This means that the movement of the excavator mechanism

occurs in a vertical plane, that is, the manipulator is considered as a planar

mechanism.

• Inertial effects of moving parts, e.g., cylinders and pistons, of the hydraulic

actuators are neglected. Masses and mass moments of inertia of the hydraulic

actuators are much smaller than those of the boom, arm and bucket. There-

fore, they can be reasonably neglected.

• Hydraulic cylinders can transmit axial forces only. There exist no radial force

components.

• Passive revolute joints have no friction. The major sources of friction are

the stiction and viscous friction between the inner wall and the piston in the

hydraulic cylinder assembly. These frictional forces can be treated in the

hydraulic system model.

• The base, boom, arm, bucket and the supports are all rigid.
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3.1.1 Kinematic Analysis of the Excavator Manipulator

The kinematic analysis of the excavating manipulator is performed to relate the

translational velocities of the center of masses of the links (vGi) to the time rates

of the joint variables (θ̇i), for i = 2, 3, 4. The choice of center of mass velocities for

rigid bodies leads to a highly systematic approach for constructing bond graphs and

is recommended [27]. This is based on the fact that the net force on a rigid body

is the rate of change of the momentum which is the mass times the velocity of the

center of mass. Also the torque about the center of mass is the rate of change of

angular momentum which is given by the inertia tensor times the angular velocity

vector at the center of mass.

Firstly a global coordinate system as shown in Figure 3.1 is defined to describe the

position of the bucket tip. A fixed right-hand cartesian coordinate system O(x0y0z0)

is chosen, and its origin is attached anywhere in the base. The local coordinate

systems A(x1y1z1), C(x2y2z2), D(x3y3z3) and N(x4y4z4) are then assigned system-

atically by applying Denavit-Hartenberg procedure as described in [41], and noting

that the Zi−1 axis lies along the axis of rotation of the ith joint.
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Figure 3.1: Coordinate System assignment for excavator

The homogeneous transformation matrix that relate two adjacent (ith and (i− 1)th)

reference frames can be written in the general form as described in [16,17];

A
(i)
i−1 =



cos θi − cos αi sin θi sin αi sin θi ai cos θi

sin θi cos αi cos θi − sin αi cos θi ai sin θi

0 sin αi cos αi di

0 0 0 1


(3.1)

Where di, ai, αi and θi are the structural kinematic parameters for the links i =

1, 2, 3, 4 defined as;

• θi is the joint angle from the Xi−1 axis to the Xi axis about the Zi−1 axis.

• di is the distance from the origin of the (i − 1)th coordinate frame to the

intersection of the Zi−1 axis with the Xi axis along the Zi−1 axis.
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• ai is the offset distance from the intersection of the Zi−1 axis with the Xi axis

to the origin of the ith frame along the X i axis.

• αi is the offset angle from the Zi−1 axis to the Zi axis about the Xi axis.

For a rotary joint, di, ai, and αi are the joint parameters and remain constant

for a manipulator, while θi is the joint variable that changes when link i rotates.

Therefore, in this research, joint variables refer to θi.

Table 3.1 shows the structural kinematic parameters of the excavating manipulator

which when substituted into Equation 3.1 leads to the homogeneous transformation

matrices for the arm as given in Equations 3.2 to 3.5.

Table 3.1: Structural kinematic parameters

Link joint i αi a1 di θi

1 0 a1 = l1 0 θ1

2 0 a2 = l2 0 θ2

3 0 a3 = l3 0 θ3

4 0 a4 = l4 0 θ4

A
(1)
0 =



cos θ1 − sin θ1 0 a1 cos θ1

sin θ1 cos θ1 0 a1 sin θ1

0 0 1 0

0 0 0 1


(3.2)
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A
(2)
1 =



cos θ2 − sin θ2 0 a2 cos θ2

sin θ2 cos θ2 0 a2 sin θ2

0 0 1 0

0 0 0 1


(3.3)

A
(3)
2 =



cos θ3 − sin θ3 0 a3 cos θ3

sin θ3 cos θ3 0 a3 sin θ3

0 0 1 0

0 0 0 1


(3.4)

A
(4)
3 =



cos θ4 − sin θ4 0 a4 cos θ4

sin θ4 cos θ4 0 a4 sin θ4

0 0 1 0

0 0 0 1


(3.5)

The dynamic model for the excavator is presented in digging mode, i.e., the swing

angle θ1 of the first link is held constant at zero (00) such that θ̇1 = 0. Therefore

the transformation matrix given in Equation 3.2 becomes;

A
(1)
0 =



1 0 0 a1

0 1 0 0

0 0 1 0

0 0 0 1


(3.6)

It follows that the movements of the excavator mechanism during digging occur in

a vertical plane.
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3.1.2 Forward Recursive Equations

Luh et al. [18] proposed recursive way of determining equations of motion of links by

referencing all the velocities, accelerations, forces, etc, to their own link coordinate

system. In forward recursion, two rotation matrices obtained from the upper left

3×3 sub-matrix of the transformation matrix in Equation 3.1 and its inverse are nor-

mally applied to transform a vector with reference to coordinate frame (Xi, Yi, Zi, )

to the coordinate system (Xi−1, Yi−1, Zi−1, ). These rotation matrices are given in

Equations 3.7 and 3.8 below;

R
(i)
i−1 =


cos θi − cos αi sin θi sin αi sin θi

sin θi cos αi cos θi − sin αi cos θi

0 sin αi cos αi

 (3.7)

and

[R
(i−1)
i ] = [R

(i)
i−1]

−1 =


cos θi sin θi 0

− cos αi sin θi cos αi cos θi sin αi

sin αi sin θi − sin αi cos θi cos αi

 (3.8)

3.1.2.1 Angular Velocity

The rotational velocity of link i as specified in the ith coordinate frame, is described

in recursive form as;

ω
(i)
i = R

(i−1)
i ω

(i−1)
i−1 + Z̀0q̇i (3.9)

where

Z̀0 =


0

0

1


q̇i = θ̇i for revolute joints.
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3.1.2.2 Translational Velocity of the Origin of Link Coordinate Frame

The translation velocity vi
0i of the origin of the ith link coordinate frame as specified

in the ith coordinate frame is given recursively as;

v
(i)
0i = R

(i−1)
i v

(i−1)
0i−1 + ω

(i)
i × (P

(i)
0i − P

(i)
0i−1) (3.10)

where

P
(i)
0i−1 is the vector from the origin of the base coordinate system to the origin of the

(i− 1)th coordinate system as expressed in the ith coordinate system.

P
(i)
0i is the vector from the origin of the base coordinate system to the origin of the

ith coordinate system as expressed in the ith coordinate system.

v
(i−1)
0i−1 is the translation velocity of the origin of the (i − 1)th link coordinate frame

as expressed in the (i− 1)th coordinate frame.

3.1.2.3 Translational Velocity of the Center of Mass of a Link

The translational velocity vi
Gi of the center of mass of the ith link as specified in the

ith coordinate frame is given recursively by;

v
(i)
Gi = v

(i)
0i + ω

(i)
i × (P

(i)
Gi − P

(i)
0i ) (3.11)

Where

P
(i)
Gi is the vector from the origin of the base coordinate system to the center of mass

of the ith frame as expressed in the ith coordinate system.

P
(i)
0i is the vector from the origin of the base coordinate system to the origin of the

ith coordinate system as expressed in the ith coordinate system.
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Then applying the recursive Equations 3.9, 3.10, and 3.11 to the excavator links

i = 2, 3, 4, the translational velocities of the links center of masses expressed in

the respective frame can be developed. The last step is to determine the centroid

velocities of the links with respect to the non moving base frame. This is done by

rotating vi
Gi with the rotation matrix Ri

0 which is given as;

R
(i)
0 = R

(1)
0 R

(2)
1 .......R

(i)
i−1 (3.12)

3.1.2.4 Applying the Recursive Equations to the Boom Link i = 2

Consider Figure 3.2.
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Figure 3.2: Kinematic analysis for the boom link

Since the base is taken to be stationary then ω
(1)
1 = 0 and v

(1)
1 = 0. Therefore;
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ω
(2)
2 = R

(1)
2 ω

(1)
1 + Z̀0θ̇2

=


cos θ2 sin θ2 0

− sin θ2 cos θ2 0

0 0 1




0

0

0

 +


0

0

1

 θ̇2

ω
(2)
2 = ω

(0)
2 =


0

0

θ̇2

 (3.13)

v
(2)
02 = R

(1)
2 v

(1)
01 + ω

(2)
2 × (P

(2)
02 − P

(2)
01 )

= R
(1)
2 v

(1)
01 + ω

(2)
2 × L̄O1O2

=


cos θ2 sin θ2 0

− sin θ2 cos θ2 0

0 0 1




0

0

0

 +


0

0

θ̇2

×


LO1O2

0

0



v
(2)
02 =


0

LO1O2 θ̇2

0

 (3.14)

To determine the v
(2)
G2, let ∠G2O2O1 = σ1 where G2 is the position of the center of

mass of link 2. Therefore,
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v
(2)
G2 = v

(2)
02 + ω

(2)
2 × (P

(2)
G2 − P

(2)
02 )

=


0

LO1O2 θ̇2

0

 +


0

0

θ̇2

×


−LG2O2 cos σ1

LG2O2 sin σ1

0



=


0

LO1O2 θ̇2

0

 +


−LG2O2 θ̇2 sin σ1

−LG2O2 θ̇2 cos σ1

0



v
(2)
G2 =


−LG2O2 θ̇2 sin σ1

−LG2O2 θ̇2 cos σ1 + LO1O2 θ̇2

0

 (3.15)

To determine the translational velocity of the center of mass of the boom link as

referenced to the base frame, v
(2)
G2 is multiplied with a rotational matrix obtained

from Equation 3.12 and given by;

R
(2)
0 = R

(1)
0 R

(2)
1

=


1 0 0

0 1 0

0 0 1




cos θ2 − sin θ2 0

sin θ2 cosθ2 0

0 0 1



=


cos θ2 − sin θ2 0

sin θ2 cosθ2 0

0 0 1

 (3.16)

Therefore v
(0)
G2 is obtained as;
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v
(0)
G2 =


cos θ2 − sin θ2 0

sin θ2 cosθ2 0

0 0 1




−LG2O2 θ̇2 sin σ1

−LG2O2 θ̇2 cos σ1 + LO1O2 θ̇2

0



=


−LG2O2 θ̇2 cos θ2 sin σ1 + LG2O2 θ̇2 sin θ2 cos σ1 − LO1O2 θ̇2 sin θ2

−LG2O2 θ̇2 sin θ2 sin σ1 − LG2O2 θ̇2 cos θ2 cos σ1 + LO1O2 θ̇2 cos θ2

0



=


LG2O2 θ̇2 sin(θ2 − σ1)− LO1O2 θ̇2 sin θ2

−LG2O2 θ̇2 cos(θ2 − σ1) + LO1O2 θ̇2 cos θ2

0

 (3.17)

From which the horizontal and vertical velocity components of the boom’s center of

mass with respect to the base coordinate frame are obtained respectively as;

vG2x =
[
LG2O2 sin(θ2 − σ1)− LO1O2 sin θ2

]
θ̇2

= r1θ̇2 (3.18)

vG2y =
[
− LG2O2 cos(θ2 − σ1) + LO1O2 cos θ2

]
θ̇2

= r2θ̇2 (3.19)

Using Equations 3.18 and 3.19, a bond graph model of the boom link can be repre-

sented as shown in Figure 3.3.
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Figure 3.3: Bond graph representation of the boom’s mechanical dynamics

where

M2 is the mass of link 2 (boom),

r1 = LG2O2 sin(θ2 − σ1)− LO1O2 sin θ2,

r2 = −LG2O2 cos(θ2 − σ1) + LO1O2 cos θ2 and

J2 is the mass inertia of link 2 (boom) about the center of mass.

3.1.2.5 Applying the Recursive Equations to the Arm Link i = 3

Consider Figure 3.4.
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Figure 3.4: Kinematic analysis for the arm link

ω
(3)
3 = R

(2)
3 ω

(2)
2 + Z̀0θ̇3

=


cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1




0

0

θ̇2

 +


0

0

1

 θ̇3

ω
(3)
3 = ω

(0)
3 =


0

0

θ̇2 + θ̇3

 (3.20)
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v
(3)
03 = R

(2)
3 v

(2)
02 + ω

(3)
3 × (P

(3)
03 − P

(3)
02 )

= R
(2)
3 v

(2)
02 + ω

(3)
3 × L̄O2O3

=


cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1




0

LO1O2 θ̇2

0

 +


0

0

θ̇2 + θ̇3

×


LO2O3

0

0



=


LO1O2 θ̇2 sin θ3

LO1O2 θ̇2 cos θ3

0

 +


0

LO2O3(θ̇2 + θ̇3)

0



v
(3)
03 =


LO1O2 θ̇2 sin θ3

LO1O2 θ̇2 cos θ3 + LO2O3(θ̇2 + θ̇3)

0

 (3.21)

To determine the v
(3)
G3, let ∠G3O3O2 = σ2 where G3 is the position of the center of

mass of link 3. Therefore,
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v
(3)
G3 = v

(3)
03 + ω

(3)
3 × (P

(3)
G3 − P

(3)
03 )

=


LO1O2 θ̇2 sin θ3

LO1O2 θ̇2 cos θ3 + LO2O3(θ̇2 + θ̇3)

0

 +


0

0

θ̇2 + θ̇3

×


−LG3O3 cos σ2

LG3O3 sin σ2

0



=


LO1O2 θ̇2 sin θ3

LO1O2 θ̇2 cos θ3 + LO2O3(θ̇2 + θ̇3)

0

 +


−LG3O3(θ̇2 + θ̇3) sin σ2

−LG3O3(θ̇2 + θ̇3) cos σ2

0



v
(3)
G3 =


LO1O2 θ̇2 sin θ3 − LG3O3(θ̇2 + θ̇3) sin σ2

LO1O2 θ̇2 cos θ3 + LO2O3(θ̇2 + θ̇3)− LG3O3(θ̇2 + θ̇3) cos σ2

0

 (3.22)

To determine the translational velocity of the center of mass of the arm link as

referenced to the base frame, v
(3)
G3 is multiplied with a rotational matrix obtained

from Equation 3.12 and given by;

R
(3)
0 = R

(1)
0 R

(2)
1 R

(3)
2

=


1 0 0

0 1 0

0 0 1




cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1




cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1



=


cos(θ2 + θ3) − sin(θ2 + θ3) 0

sin(θ2 + θ3) cos(θ2 + θ3) 0

0 0 1

 (3.23)

Let,

S2 = sin θ2,
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S3 = sin θ3,

C2 = cos θ2,

C3 = cos θ3,

S23 = sin(θ2 + θ3) and

C23 = cos(θ2 + θ3).

v
(0)
G3 is obtained as;

v
(0)
G3 =


C23 −S23 0

S23 C23 0

0 0 1




LO1O2 θ̇2S3 − LG3O3(θ̇2 + θ̇3) sin σ2

LO1O2 θ̇2C3 + LO2O3(θ̇2 + θ̇3)− LG3O3(θ̇2 + θ̇3) cos σ2

0



=


−LO1O2 θ̇2S2 + LG3O3(θ̇2 + θ̇3) sin(θ2 + θ3 − σ2)− LO2O3(θ̇2 + θ̇3)S23

LO1O2 θ̇2C2 − LG3O3(θ̇2 + θ̇3) cos(θ2 + θ3 − σ2) + LO2O3(θ̇2 + θ̇3)C23

0


(3.24)

From which the horizontal and vertical velocity components are given as;

vG3x =
[
− LO1O2 sin θ2 + LG3O3 sin(θ2 + θ3 − σ2)− LO2O3 sin(θ2 + θ3)

]
θ̇2

+
[
LG3O3 sin(θ2 + θ3 − σ2)− LO2O3 sin(θ2 + θ3)

]
θ̇3

= r3θ̇2 + r4θ̇3 (3.25)

vG3y =
[
LO1O2 cos θ2 − LG3O3 cos(θ2 + θ3 − σ2) + LO2O3 cos(θ2 + θ3)

]
θ̇2

+
[
− LG3O3 cos(θ2 + θ3 − σ2) + LO2O3 cos(θ2 + θ3)

]
θ̇3

= r5θ̇2 + r6θ̇3 (3.26)
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Using Equations 3.25 and 3.26, a bond graph model of the arm link can be repre-

sented as shown in Figure 3.5.
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Figure 3.5: Bond graph representation of the arms’s mechanical dynamics

where

M3 is the mass of link 3 (arm),

r3 = −LO1O2 sin θ2 + LG3O3 sin(θ2 + θ3 − σ2)− LO2O3 sin(θ2 + θ3),

r4 = −LG3O3 sin(θ2 + θ3 − σ2) + LO2O3 sin(θ2 + θ3),

r5 = LO1O2 cos θ2 − LG3O3 cos(θ2 + θ3 − σ2) + LO2O3 cos(θ2 + θ3),

r6 = −LG3O3 cos(θ2 + θ3 − σ2) + LO2O3 cos(θ2 + θ3 and

J3 is the mass inertia of link 3 (arm) about the center of mass.
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3.1.2.6 Applying the Recursive Equations to the Bucket Link i = 4

Consider Figure 3.6.
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Figure 3.6: Kinematic analysis for the bucket link
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ω
(4)
4 = R

(3)
4 ω

(3)
3 + Z̀0θ̇4

=


cos θ4 sin θ4 0

− sin θ4 cos θ4 0

0 0 1




0

0

θ̇2 + θ̇3

 +


0

0

1

 θ̇4

ω
(4)
4 = ω

(0)
4 =


0

0

θ̇2 + θ̇3 + θ̇4

 (3.27)

v
(4)
04 = R

(3)
4 v

(3)
03 + ω

(4)
4 × (P

(4)
04 − P

(4)
03 )

= R
(3)
4 v

(3)
03 + ω

(4)
4 × (L̄O0O4 − L̄O0O3)

= R
(3)
4 v

(3)
03 + ω

(4)
4 × L̄O3O4

=


cos θ4 sin θ4 0

− sin θ4 cos θ4 0

0 0 1




LO1O2 θ̇2 sin θ3

LO1O2 θ̇2 cos θ3 + LO2O3(θ̇2 + θ̇3)

0

 +


0

0

θ̇2 + θ̇3 + θ̇4



×


LO3O4

0

0



=


LO1O2 θ̇2 sin(θ3 + θ4) + LO2O3(θ̇2 + θ̇) sin θ4

LO1O2 θ̇2 cos(θ3 + θ4) + LO2O3(θ̇2 + θ̇) cos θ4

0

 +


0

LO3O4(θ̇2 + θ̇3 + θ̇4)

0



v
(4)
04 =


LO1O2 θ̇2 sin(θ3 + θ4) + LO2O3(θ̇2 + θ̇3) sin θ4

LO1O2 θ̇2 cos(θ3 + θ4) + LO2O3(θ̇2 + θ̇3) cos θ4 + LO3O4(θ̇2 + θ̇3 + θ̇4)

0

 (3.28)
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To determine the v
(4)
G4, let ∠G4O4O3 = σ3 where G4 is the position of the center of

mass of link 4. Therefore,

v
(4)
G4 = v

(4)
04 + ω

(4)
4 × (P

(4)
G4 − P

(4)
03 )

=


LO1O2 θ̇2S34 + LO2O3ϕ̇23 sin θ4

LO1O2 θ̇2C34 + LO2O3ϕ̇23 cos θ4 + LO3O4ϕ̇234

0



+


0

0

θ̇2 + θ̇3 + θ̇4

×


−LG4O4 cos σ3

LG4O4 sin σ3

0



=


LO1O2 θ̇2S34 + LO2O3ϕ̇23 sin θ4

LO1O2 θ̇2S34 + LO2O3ϕ̇23 cos θ4 + LO3O4ϕ̇234

0

 +


−LG4O4ϕ̇234 sin σ3

−LG4O4ϕ̇234 cos σ3

0



v
(4)
G4 =


LO1O2 θ̇2S34 + LO2O3ϕ̇23S4 − LG4O4ϕ̇234 sin σ3

LO1O2 θ̇2C34 + LO2O3ϕ̇23C4 + LO3O4ϕ̇234 − LG4O4ϕ̇234 cos σ3

0

 (3.29)

To determine the translational velocity of the center of mass of the bucket link as

referenced to the base frame, v
(4)
G4 is multiplied with a rotational matrix obtained
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from Equation 3.12 and given by;

R
(4)
0 = R

(1)
0 R

(2)
1 R

(3)
2 R

(4)
3

=


1 0 0

0 1 0

0 0 1




cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1




cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1




cos θ4 − sin θ4 0

sin θ4 cos θ4 0

0 0 1



=


cos(θ2 + θ3 + θ4) − sin(θ2 + θ3 + θ4) 0

sin(θ2 + θ3 + θ4) cos(θ2 + θ3 + θ4) 0

0 0 1

 (3.30)

v
(0)
G4 is obtained as;

v
(0)
G4 =


C234 −S234 0

S234 C234 0

0 0 1




LO1O2 θ̇2S34 + LO2O3ϕ̇23S4− LG4O4ϕ̇234 sin σ3

LO1O2 θ̇2C34 + LO2O3ϕ̇23C4 + LO3O4ϕ̇234 − LG4O4ϕ̇234 cos σ3

0



=


−LO1O2S2θ̇2 − LO2O3S23ϕ̇23 − LO3O4S234ϕ̇234 + LG4O4S234σ3ϕ̇234

LO1O2C2θ̇2 − LO2O3C23ϕ̇23 − LO3O4C234ϕ̇234 − LG4O4C234σ3ϕ̇234

0

 (3.31)

where

ϕ̇23 = θ̇2 + θ̇3,

ϕ̇234 = θ̇2 + θ̇3 + θ̇4,

S234σ3 = sin(θ2 + θ3 + θ4 − σ3),

C234σ3 = cos(θ2 + θ3 + θ4 − σ3),

S234 = sin(θ2 + θ3 + θ4) and
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C234 = cos(θ2 + θ3 + θ4).

From which the horizontal and vertical velocity components are given as;

vG4x =
[
− LO1O2 sin θ2 − LO2O3 sin(θ2 + θ3)− LO3O4 sin(θ2 + θ3 + θ4)

+LG4O4 sin(θ2 + θ3 + θ4 − σ3)
]
θ̇2 +

[
− LO2O3 sin(θ2 + θ3)

−LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 + θ3 + θ4 − σ3)
]
θ̇3 +[

− LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 + θ3 + θ4 − σ3)
]
θ̇4

= r7θ̇2 + r8θ̇3 + r9θ̇4 (3.32)

vG4y =
[
LO1O2 cos θ2 + LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4)

−LG4O4 cos(θ2 + θ3 + θ4 − σ3)
]
θ̇2 +

[
LO2O3 cos(θ2 + θ3)

+LO3O4 cos(θ2 + θ3 + θ4)− LG4O4 cos(θ2 + θ3 + θ4 − σ3)
]
θ̇3 +[

LO3O4 cos(θ2 + θ3 + θ4)− LG4O4 cos(θ2 + θ3 + θ4 − σ3)
]
θ̇4

= r10θ̇2 + r11θ̇3 + r12θ̇4 (3.33)

Using Equations 3.32 and 3.33, a bond graph model of the bucket link can be

represented as shown in Figure 3.7.

where

M4 is the mass of link 4 (bucket),

r7 = −LO1O2 sin θ2 − LO2O3 sin(θ2 + θ3) − LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 +

θ3 + θ4 − σ3),

r8 = −LO2O3 sin(θ2 + θ3)− LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 + θ3 + θ4 − σ3),
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Figure 3.7: Bond graph representation of the buckets’s mechanical dynamics

r9 = −LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 + θ3 + θ4 − σ3),

r10 = LO1O2 cos θ2 + LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4) − LG4O4 cos(θ2 +

θ3 + θ4 − σ3),

r11 = LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4)− LG4O4 cos(θ2 + θ3 + θ4 − σ3),

r12 = LO3O4 cos(θ2 + θ3 + θ4)− LG4O4 cos(θ2 + θ3 + θ4 − σ3) and

J4 is the mass inertia of link 4 (bucket) about the center of mass.

3.1.3 Modeling the Bucket Digging Force

A model that accounts for the material being retained in the bucket, which was

developed by Cannon [10] using force equilibrium and fundamental earthmoving

Equation in soil mechanics was applied in this study to determine the force F exerted

by the excavator bucket to the soil. Force F exerted by the excavator bucket to the
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soil can be obtained from Figure 3.8 as shown in Equation 3.34.

42

Finally to compensate for the slope of the terrain, the wedge model as shown in Figure 25 is used.

Note how the depth is now measured perpendicular to the terrain, and the rake angle ρ is mea-
sured between the surface of the terrain and the blade. Again the material that is shaded corre-
sponds to the swept volume. The x axis of the coordinate system has been oriented parallel to the
terrain, so that the equilibrium equations become:

(13)

where α is the terrain angle. Removing the soil reaction force R from the equation, we obtain:

(14)

The weight of the material in the unshaded region is given by:

(15)

Figure 25: Wedge model that accounts for the material being retained in the bucket, and for the slope of the ter-
rain.The material in the shaded region corresponds to the swept volume Vs. Q is the surcharge, W1 is the weight of
the material above the bucket, W2 is the weight of the rest of the material in the wedge. Lt is the length of the tool,
Lf is the length of the failure surface, φ is the soil-soil friction angle, c is the cohesiveness of the soil, ca is the adhe-
sion between the soil and blade, δ is the soil-tool friction angle, β is the failure surface angle, ρ is the rake angle
relative to the soil surface, d is the depth of the tool perpendicular to the soil surface, R is the force of the soil
resisting the moving of the wedge, F is the force exerted by the tool on the wedge, and α is the terrain slope.

β

cLf

δ

z

x

F

ρ

caLt

φ

Rα

d

Q
W2W1

Fx∑ F ρ δ+( )sin( ) V sg α R β φ+( ) cL f w β W 2 αsin–cos–sin–sin– 0= =

Fz∑ F ρ δ+( )cos( ) V sg α R β φ+( ) cL f w β W 2 αcos–sin–cos–cos– 0= =

F
Vsg α α β φ+( )cotsin+cos( ) cL f w β β φ+( ) βsin+( )cotcos( ) W α β φ+( ) αcos+cotsin( )+ +

ρ δ+( ) β φ+( ) ρ δ+( )cos+cotsin
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

W 2
1
2
---d2 β αtan–cot( )wγg=

Figure 3.8: Wedge model that accounts for the material being retained in the

bucket

F = d2wγgNw + cwdNc + VsγgNq (3.34)

The material in the shaded region corresponds to the swept volume Vs, Q is the

surcharge, W1 is the weight of the material above the bucket, W2 is the weight of

the rest of material in the wedge, Lt is the length of the tool, Lf is the length of

the failure surface, R is the force of the soil resisting the moving of the wedge, F is

the force exerted by the tool on the wedge, ca is the adhesion between the soil and

the blade, c is the cohesiveness of the soil media, β is the failure surface angle, also

called the slip angle, α is the surface terrain slope, also called the cutting angle, φ is

the soil-soil friction angle, ρ is the rake angle of the tool relative to the soil surface,

σ is the soil-tool friction angle, d is the depth of the bucket tool perpendicular to

the soil surface, w is the width of the bucket, γ is the bulk density of the soil media

and g is the gravitational acceleration.

Nw, Nc Nq are N-factors which depend on: the soil’s frictional strength, the bucket
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tool geometry and soil-to-tool strength properties, and are given by the Equations

3.35, 3.36 and 3.37 respectively.

Nw =

(
cot β − tan α

)(
cos α + sin α cot(β + φ)

)
2
(

cos(ρ + σ) + sin(ρ + σ) cot(β + φ)
) (3.35)

Nc =
1 + cot β cot(β + φ)

cos(ρ + σ) + sin(ρ + σ) cot(β + φ)
(3.36)

Nq =
cos α + sin α cot(β + φ)

cos(ρ + σ) + sin(ρ + σ) cot(β + φ)
(3.37)

Equations 3.34 to 3.37 show that the magnitude of the digging force depends on

many factors such as the cutting angle, specific resistance to cutting, volume of

the bucket, amount of the the material ripped into the bucket and the volume

of the material surcharged. These factors are always varying during the bucket

digging operation and indicate complicated interactions of the bucket and the soil,

hence making modeling of the bucket digging force throughout the digging process

a complex and bulk process.

In this study, a simplified model is presented by considering the situation of criti-

cal force, and then assuming the force to remain constant throughout the digging

process. The critical value of the cutting angle is given by [11],

αc =
1

2

(
π − σ − sin−1(sin σ sin ρ)

)
(3.38)

For noncohesive soils such as sandy-loom, the angle of friction between the steel

blade with soil (σ) is 200, the rake angle of the tool relative to the soil surface (ρ)

is 450 and the soil-soil friction angle (φ) is 230 [11]. Therefore using Equation 3.38

the critical cutting angle (αc) was found to be 730.
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Since the soil frictional properties alone determine the failure zones in soil cutting,

the most likely slip angle β is that which causes Nw in Equation 3.35 to be minimum.

In effect, this identifies path of least resistance for the soil to fail. When different

values of β (between 00 and 900 degrees) are tried, Nw varies and the most likely

value of β is found at the minimum value of Nw, and is then used to calculate the

other terms [42]. Therefore a curve of Nw factor versus the β is plotted to determine

the appropriate value of β and Nw, as shown in Figure 3.9. From the curve β = 380

and Nw = 0.6875.
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Figure 3.9: The variation of Nw factor with the slip angle βd

The other factors can therefore be calculated from Equations 3.36 and 3.37 as Nc =

1.8481 and Nq = 0.8860. Using Equation 3.34 and noting that; the width of the

bucket (w) is 274mm, the depth (d) of the bucket tool perpendicular to the soil
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surface at the critical instant is 212.13mm, the cohesiveness (c) and the bulk density

(γ) of the sandy-loam soil media are 20kPa and 1200kg/m3 [11] respectively, we get

the critical force applied to the soil by the bucket to be F = 4.5kN .

The soil-tool force F is assumed to be applied at the cutting edge of the bucket.

From the Newton’s third law of motion, the soil applies an opposite and equal

reaction force at the bucket, which can be resolved to a normal and tangential force

components as shown in Figure 3.10

G

3x
3y

3,OD

4,ON

4x

4y

bθ

bθ TF

NF

Figure 3.10: Bucket digging force at the tip

FT and FN are the tangential and normal reaction forces at the bucket tip as given

in Equations 3.39 and 3.40 respectively.

FT =F sin σ (3.39)

FN=F cos σ (3.40)

Resolving the normal and tangential forces about the fourth local coordinate system
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(x4y4z4) we get;

F
(4)
b4 =


−FT cos θb + FN sin θb

−FT sin θb − FN cos θb

0

 (3.41)

The bucket force should be referenced to the base coordinate frame by multiplying

Equation 3.41 by the rotation matrix in Equation 3.30 to get;

F
(0)
b4 =


−(FT cos θb − FN sin θb)C234 + (FT sin θb + FN cos θb)S234

−(FT cos θb − FN sin θb)S234 − (FT sin θb + FN cos θb)C234

0

 (3.42)

From which, the horizontal and vertical components of the bucket reaction force are

given as;

Fx=−(FT cos θb − FN sin θb) cos(θ2 + θ3 + θ4) + (FT sin θb + FN cos θb) sin(θ2

+θ3 + θ4) (3.43)

Fy=−(FT cos θb − FN sin θb) sin(θ2 + θ3 + θ4)− (FT sin θb + FN cos θb) cos(θ2

+θ3 + θ4) (3.44)

These forces are included at the translational velocity of the origin of the 4th link

coordinate frame given by Equation 3.28, but referenced to the base coordinate
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frame, that is;

v
(0)
O4 = R

(4)
0 v

(4)
04

=


C234 −S234 0

S234 C234 0

0 0 1




LO1O2 θ̇2S34 + LO2O3ϕ̇23S4

LO1O2 θ̇2C34 + LO2O3ϕ̇23C4 + LO3O4ϕ̇234

0



=


−LO1O2S2θ̇2 − LO2O3S23ϕ̇23 − LO3O4S234ϕ̇234

LO1O2C2θ̇2 + LO2O3C23ϕ̇23 + LO3O4C234ϕ̇234

0

 (3.45)

From which the horizontal and vertical velocity components are given as;

vO4x =
[
− LO1O2 sin θ2 − LO2O3 sin(θ2 + θ3)− LO3O4 sin(θ2 + θ3 + θ4)

]
θ̇2 +[

− LO2O3 sin(θ2 + θ3)− LO3O4 sin(θ2 + θ3 + θ4)
]
θ̇3 +

[
− LO3O4 sin(θ2 + θ3 + θ4)

]
θ̇4

=r13θ̇2 + r14θ̇3 + r15θ̇4 (3.46)

and

vO4y =
[
LO1O2 cos θ2 + LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4)

]
θ̇2 +[

LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4)
]
θ̇3 +

[
LO3O4 cos(θ2 + θ3 + θ4)

]
θ̇4

=r16θ̇2 + r17θ̇3 + r18θ̇4 (3.47)

Using Equations 3.46 and 3.47, a bond graph model representing the soil-bucket

interaction can be represented as shown in Figure 3.11.

where

Fx and Fy are the horizontal and vertical components of the bucket digging force

as given in Equations 3.43 and 3.44 respectively,
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Figure 3.11: Bond graph representation of velocity of the buckets’s tip

r13 = −LO1O2 sin θ2 − LO2O3 sin(θ2 + θ3)− LO3O4 sin(θ2 + θ3 + θ4),

r14 = −LO2O3 sin(θ2 + θ3)− LO3O4 sin(θ2 + θ3 + θ4),

r15 = −LO3O4 sin(θ2 + θ3 + θ4)

r16 = LO1O2 cos θ2 + LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4),

r17 = LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4) and

r18 = LO3O4 cos(θ2 + θ3 + θ4).

3.1.4 A Non Causal Bond Graph Model of the Manipulator’s Dynamics

Figure 3.12 shows the overall non causal bond graph model of the excavating manip-

ulator obtained by combining all sub models of the links and the soil-tool interaction

already developed.
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Figure 3.12: A non causal bond graph model representing the mechanical

dynamics of the manipulator

No causality is assigned to the bond graph and such a bond graph is referred to as

non causal bond graph.

3.2 Checking the Model

One way to check the bond graph model developed as shown in Figure 3.12, is to

compare results with those available in the literature. A two link manipulator shown

in Figure 3.13, moving in a free space, and whose links are uniform and of equal

lengths was considered. Such a problem is studied using Newton-Euler, Lagrangian,

and d’Alembert’s methods in the standard robotic textbooks [16,17].

All the rotation axes at the joints are along the z-axis normal to the paper surface.
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Figure 3.13: A two link planar manipulator

Let;

LO1O2 = LO2O3 = l,

LG2O2 = LG3O3 =
l

2
,

σ1 = σ2 = 0.

Substituting these values in the equations for the mass center translational velocities

given by Equations 3.18, 3.19, 3.25, and 3.26, leads to,
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vG2x = (− l

2
sin θ2)θ̇2 = r1θ̇2 (3.48)

vG2y = (
l

2
cos θ2)θ̇2 = r2θ̇2 (3.49)

vG3x =
[
− l sin θ2 −

l

2
sin(θ2 + θ3)

]
θ̇2 +

[
− l

2
sin(θ2 + θ3)

]
θ̇3

= r3θ̇2 + r4θ̇3 (3.50)

vG3y =
[
l cos θ2 +

l

2
cos(θ2 + θ3)

]
θ̇2 +

[ l

2
cos(θ2 + θ3)

]
θ̇3

= r5θ̇2 + r6θ̇3 (3.51)

The translational velocity of the origin of third local coordinate frame referenced

about the base coordinate frame is given as;

v0
O3 = R3

0v
3
03

=


cos(θ2 + sin θ3) − sin(θ2 + sin θ3) 0

sin(θ2 + sin θ3) cos(θ2 + sin θ3) 0

0 0 1




lθ̇2 sin θ3

lθ̇2 cos θ3 + l(θ̇2 + θ̇3)

0



=


−lθ̇2 sin θ2 − l(θ̇2 + θ̇3) sin(θ2 + sin θ3)

lθ̇2 cos θ2 + l(θ̇2 + θ̇3) cos(θ2 + sin θ3)

0

 (3.52)

From which the horizontal and vertical components can be obtained to be;

vO3x =
[
− l sin θ2 − l sin(θ2 + θ3)

]
θ̇2 +

[
− l sin(θ2 + θ3)

]
θ̇3

= r7θ̇2 + r8θ̇3 (3.53)

vO3y =
[
l cos θ2 + l cos(θ2 + θ3)

]
θ̇2 +

[
l cos(θ2 + θ3)

]
θ̇3

= r9θ̇2 + r10θ̇3 (3.54)

A bond graph model for the two link manipulator is represented as shown in Figure

3.14.
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Figure 3.14: A non causal bond graph model representing the mechanical

dynamics of a 2-link manipulator

The joint torques applied to each of the joint by the respective actuator can be

obtained systematically from the bond graph using the constitutive relations, and

noting that Fx = Fy = 0 since the manipulator is moving in free space. The external

torque applied to move link 3 can be obtained from the bond graph as;

τ3 = e16 = e14 + e15 + e17 + e30 + e36

=
1

3
m3l

2θ̈2 +
1

3
m3l

2θ̈3 +
1

2
m3l

2θ̈2 cos θ3 +
1

2
m3l

2θ̇2
2 sin θ3

+
1

2
m3gl cos(θ2 + θ3) (3.55)

The external torque applied to move link 2 can be obtained from the bond graph

as;
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τ2 = e1 = e2 + e3 + e6 + e10 + e19 + e25 + e31 + e37

=
1

3
m2l

2θ̈2 +
4

3
m3l

2θ̈2 +
1

3
m3l

2θ̈3 + m3l
2θ̈2 cos θ3 +

1

2
m3l

2θ̈3 cos θ3 −m3l
2θ̇2θ̇3 sin θ3

−1

2
m3l

2θ̇2
2 sin θ3 +

1

2
m2gl cos θ2 + m3gl cos θ2 +

1

2
m3g cos(θ2 + θ3) (3.56)

The equations of external torque given in Equations 3.55 and 3.56 correspond to

those obtained using Newton-Euler and Lagrangian methods for the same planar

manipulator, as illustrated in [16, 17]. This indicates that, the model developed

captures the essential aspects of rigid body dynamics of the manipulator.
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CHAPTER 4

MODELING THE DYNAMICS OF HYDRAULIC ACTUATION OF

THE EXCAVATOR

4.1 Bond Graph Model Development

The hydraulic system is driven by one axial piston pump which takes low-pressure

oil from the a reservoir tank (at atmospheric pressure) and outputs high pressure

oil. The high-pressure oil flows to the cylinders, which in turn actuate the different

joints. The flow from the pump to the cylinders is controlled through spool valves

which meters out the oil through variable orifices.

The hydraulic dynamics to be modeled are the actuator dynamics, which herein re-

fer to the dynamics of the hydraulic pump, spool valves and the hydraulic cylinders

responsible for moving the joints of the excavating manipulator. Since all the links

are actuated by hydraulic cylinders, one model (with variable parameters) repre-

senting the dynamics of a valve-controlled linear cylinder shown in Figure 4.1 was

developed.

The following is a summary of the assumptions that were made when developing

the bond graph dynamic model of an hydraulic cylinder;

• The hydraulic pump delivers a constant supply pressure, irrespective of the oil

flow demand. This implies that PS is constant.

• The reservoir (tank) pressure is constant and at atmospheric pressure. Since

gauge pressures are considered then Pr = 0.

• The flows through the valves are turbulent.
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Figure 4.1: Schematic diagram of a valve controlled hydraulic cylinder

• The leakage flow through the clearance between the cylinder and the piston is

laminar.

• Possible dynamical behavior of the pressure in the transmission lines between

valves and actuators are assumed to be negligible. This means that PA = P1,

and PB = P2.

• The spool valve is matched and symmetrical. Its band-width is much higher

than the band-width of the cylinder, so that the valve dynamics due to inertia

can be neglected [11].
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• External leakage Qel between the piston rod and the external seals is neglected.

This is because external leakage on the cylinder must be avoided by use of

improved sealing technology.

• Inefficient volumes, i.e., the volume of the fluid in the hoses between the valve

and the actuator, and the volume of oil existing in the cylinder, are neglected.

4.1.1 Pump

The pump is assumed to be an ideal source of power capable of supplying constant

pressure at any flow required. Therefore the pump can be modeled in bond graph

form as an effort source, as shown in Figure 4.2.

Figure 4.2: Constant pressure pump bond graph model

4.1.2 Spool Valves

One of the criteria in selecting valves is to consider their response time. If the

resonant frequency of the spool valve is very high, its dynamic behavior is negligible

compared to the relatively low resonant frequency of the system [43]. A typical

industrial manipulator has a natural frequency in the range of 1 − 5Hz, while the

cut-off frequency of the selected valves when operating under maximum command

must be in the range of 10 − 15Hz [44]. Thus only the resistive effect of the valve

is considered.

To model the dynamics of the spool valve due to its resistive effect to the fluid flow,
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the following two assumptions are made for analysis;

• The hydraulic fluid is ideal, non-viscous and incompressible. This assump-

tion is close to reality under most conditions and is also justified as far as

phenomena inside the valve are considered.

• Valve geometry is ideal. This implies that the edges of the metering orifices

are sharp and that the working clearances are zero, hence no-internal leakage

condition is assumed [45–47].

The orifice flow equation governing flow and pressure drop across an orifice (for

turbulent flow) is known to be [46],

Q = CdAO

√
2

ρ
∆P (4.1)

Where;

Q is the flow rate through the orifice.

∆P is the pressure drop across the orifice.

Cd is the discharge coefficient.

ρ is the fluid density.

AO is the area of the orifice opening.

Equation 4.1 shows that the relative flow rates are dependent on the pressure drops

across the valves, which in turn are dependent on the forces acting on the actuator.
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Let the spool be given a positive displacement from the neutral position, i.e, yv = 0

which is chosen to be the symmetrical position of the spool in its sleeve. Using

Equation 4.1, the flow rates through the metering orifices are,

Q1 = CdAO1

√
2

ρ
(PS − P1) (4.2)

Q2 = CdAO2

√
2

ρ
(PS − P2) (4.3)

Q3 = CdAO3

√
2

ρ
(P2 − Pr) (4.4)

and

Q4 = CdAO4

√
2

ρ
(P1 − Pr) (4.5)

The return pressure Pr = 0, since the tank pressure is taken to be at atmospheric.

Since the geometry of the valve is assumed ideal and the valving orifices are matched

and symmetrical then Q2 = Q4 = 0, and AO1 = AO3 = AO(yv).

Note that from Figure 4.1, the total supply flow (QS) is given as;

QS = Q1 + Q2 = Q1 (4.6)

and also as;

QS = Q3 + Q4 = Q3 (4.7)

From Figure 4.1, flow to the chamber A of cylinder and flow out of chamber B of

the cylinder are given as;

QA = Q1 −Q4

= Q1

= CdAO(yv)

√
2

ρ
(Ps − PA) (4.8)
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and

QB = Q3 −Q2

= Q3

= CdAO(yv)

√
2

ρ
(PB − Pr) (4.9)

The area of the valve orifice opening is dependent on the valve spool displacement

(yv) as shown in Figure 4.3. If the port is of radius r, the uncovered area of the

orifice where the fluid passes is presented next.

Figure 4.3: Variation of valve orifice area with spool movement

AO(yv) =
α

2π
πr2 − 1

2
(2r sin

α

2
)r cos

α

2

=
r2

2
(α− sin α) (4.10)

56



Where α varies with the valve displacement as shown below;

cos
α

2
=

r − (yv − yd)

r

α = 2 cos−1
(r − (yv − yd)

r

)
(4.11)

Equations 4.8 and 4.9 show that the flow that is transferred from the pump to the

cylinder is determined by the flow coefficient, the area of the valve orifice and the

pressure difference.

Equations 4.8 and 4.9, are appropriate expressions for the constitutive relations of

orifice resistances to the flow rate to and from the cylinder and can be represented

as;

Ps − PA = ∆PA =
ρ

2C2
d(AO(yv))2

QA|QA| = R1QA|QA| (4.12)

and

PB − Pr = ∆PB =
ρ

2C2
d(AO(yv))2

QB|QB| = R2QB|QB| (4.13)

The absolute value sign has been used to correct the sign in the pressure drop for

negative flow rate.

Equations 4.12 and 4.13 show that the valve resistances are equal, i.e.,

R1 = R2 =
ρ

2C2
d(AO(yv))2

(4.14)

Hence the valve resistances R1 and R2 given in Equation 4.14 depend on the position

of the valve (yv). The bond graph representation of the valve resistance effects to

the fluid flow to and from the cylinder are shown in Figures 4.4 and 4.5.

An active bond has been used to indicate that the valve resistances depend on the

valve displacements. An active bond is just like a signal in a block diagram, and is
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Figure 4.4: Bond graph representation of valve resistance to forward flow

Figure 4.5: Bond graph representation of valve resistance to return flow

shown with a full arrow. The active bond implies that no feedback effect is consid-

ered, i.e., an effort or flow signal is transmitted in one direction, the complimentary

signal does not flow in the opposite direction as in a normal bond [28].

4.1.3 Linear Cylinders

Three single-ended type of hydraulic cylinders will be used to actuate the boom, arm,

and bucket links of the excavating manipulator. The following two assumptions are

made before deriving the bond graph model of the cylinder;

• The cylinder chambers are assumed to be rigid, i.e., no compliance in the

walls. The stiffness of the cylinder chambers is more than five times higher

than that of the hydraulic oil. Therefore when operating at the same pressure
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range, the compliance effect from cylinder walls is negligible compared to the

oil compliance.

• Viscous friction effects in the piston seals are assumed to be dominant com-

pared to the coulomb friction effects. Hydraulic oil lubricates the sliding pas-

sages in the cylinder and this greatly reduces the effects of coulomb friction.

Figure 4.6 shows a schematic diagram of a hydraulic cylinder. The cylinder piston

has diameter Dp, area Ap and the rod has diameter Dr and area Ar.

Figure 4.6: Schematic diagram of the linear actuator

The chamber at the head side has a pressure PA and flow rate QA, and are positive

into the cylinder. The chamber at the rod side has pressure PB and flow rate QB,

and are positive out of the cylinder.

Hydraulic cylinders transform hydraulic energy into mechanical energy, i.e., the

pressure difference at the two cylinder chambers provide mechanical force which
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drives the piston. Bond graph method identifies this transformation in terms of

transformer elements, which can be represented as shown in Figure 4.7.

Figure 4.7: Bond graph representation of the pressure difference in cylinder

chambers

The piston and rod mass of the cylinder, is modeled as a I−element which is attached

to the 1−junction with the piston velocity (ẋ) as the common variable.

4.1.3.1 Modeling Compressibility of Oil in a Hydraulic Cylinder

The influence of the finite oil stiffness on the dynamics of hydraulic system is similar

to that of a spring compressibility in mechanical systems. A measure of oil com-

pressibility is the bulk modulus, which relates the variation of pressure and volume

of oil in a closed vessel as shown below [46],

∆p = β(
−∆V

V
) (4.15)

where

β is the Bulk Modulus of the fluid
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∆V is the decrease in volume of the fluid due to pressure

V is the volume itself.

Equation 4.15 is usually considered the constitutive law of a linear one port C−element

of compliance C = V
β
, attached to the zero junction representing the hydrostatic

pressure [48], as shown in Figure 4.8

Figure 4.8: C-element representing fluid compressibility

Application of Equation 4.15 to the chambers of a hydraulic cylinder however reveals

a problem with respect to a correct bond graph representation, since the chamber

volume depends on the displacement x of the piston. Therefore,

∆p = β
−∆V

Vo + Apxp

(4.16)

where

Vo is the volume of chamber at start position x = xo

Ap is the area of the piston.

The compliance Vo+Apx

β
can be considered as a displacement dependent compliance

(C(x)), i.e.,

C(x) =
Vo + Apx

β
(4.17)

Equation 4.17 can be depicted in the bond graph by means of a modulation signal

as shown in Figure 4.9
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Figure 4.9: Displacement Modulated C element

The displacement dependent compliance in Equation 4.17 has been taken into ac-

count without expressing the modulation in the bond graph [49], but this means

that the bond graph does not properly correspond to the mathematical model in

use.

Each chamber therefore has displacement dependent compliance CA and CB given

as;

CA =
VA

β
=

Apx

β
(4.18)

and

CB =
VB

β
=

(Ap − Ar)(Lcy − Lp − x)

β
(4.19)

Which can be represented in bond graph form as in Figures 4.10 and 4.11,

Figure 4.10: Displacement Modulated C element of cylinder chamber A

Figure 4.11: Displacement Modulated C element of cylinder chamber B
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4.1.3.2 Modeling the Leakage Flows

There is always some clearance between the cylinder and the piston to allow relative

motion. Even though these clearances are small in comparison with the normal

cross-sectional area of the oil flow in a circuit, they act as leakage paths when

pressure drops are imposed [11]. Internal leakage occurs in hydraulic cylinders as

result of a pressure difference existing between the two chamber.

The fluid flow rate in the clearance can be obtained from Hagen-Poisseille equation

as;

Qil =
πDpc

3

12µLp

(PA − PB) (4.20)

Equation 4.20 can be depicted in bond graph form as shown in Figure 4.12 below;

Figure 4.12: Bond graph model representing the leakage in piston and cylinder

wall clearance

Where

Ril =
12µLp

πDpc3
(4.21)

4.1.3.3 Modeling the Viscous Friction

Another object in developing a correct bond graph model of a double acting hy-

draulic cylinder is the viscous friction which generally oppose the piston movements.
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This viscous friction has been considered by few authors, e.g. in [48, 50], often it is

simply neglected.

Viscous friction due to piston movement is described by Newton’s law as [46],

FN = µ
A

c

∂x

∂t
= µ

πDpLp

c
ẋ (4.22)

This viscous friction due to the piston movement is modeled as a R−element at-

tached to the 1−junction with the piston velocity (ẋ) as the common variable. This

is shown in Figure 4.13,

Figure 4.13: Bond graph model representing the viscous friction due to piston

movement

Where

RN =
µπDpLp

c
(4.23)

4.1.4 Bond Graph Model of a Valve Controlled Cylinder

Figure 4.14 shows the overall bond graph model of a valve-controlled hydraulic

cylinder with causality assigned using Sequential Causality Assignment Procedure

(SCAP) as clearly illustrated in [29, 31, 34]. The model is obtained by assembling

the sub models of the hydraulic components which have been already developed.

The bonds are numbered for easier analysis purposes.

4.2 Checking the Bond Graph Model

The bond graph model of the hydraulic dynamics of the actuator was validated first

before coupling it to the model representing mechanical dynamics of the excavating
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Figure 4.14: A causal bond graph model for the cylinder during extension

manipulator. The validation was done by comparing the open loop state responses

of the cylinder obtained from simulating the bond graph model, to those obtained

by simulating the Ordinary Differential Equation (ODE) model of a cylinder devel-

oped by Nguyen [11] based on the same assumptions. The designed arm cylinder

parameters as shown in Table 4.1 together with hydraulic parameters in Table 4.2

were used in simulating the two models.

Table 4.1: Hydraulic cylinder parameters

Parameter description Units Boom Arm Bucket 
Length of cylinder barrel        cyL  mm  480  320  395  

Length of rod,                         rL  mm  450  290  365  
Length of stroke,                     sL  mm  430  270  345  
Length of piston,                    pL  mm  50  50  50  

Diameter of piston,                pD  mm  5.63  5.63  5.63  

Diameter of rod,                    rD  mm  5.28  5.28  5.28  
Length of end cap1 ,              1eL  mm  30  30  30  
Length of end cap2,               2eL  mm  40  40  40  
Length of bracket1,                1L            mm  50  50  50  
Length of bracket2,                2L  mm  20  20  20  
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Table 4.2: Pump, valve and hydraulic parameters

Pump parameters 
Maximum operating pressure ( maxP ) 6100.17 ×  Pa  
Maximum flow rate ( maxQ ) 65  min/lit  
Maximum speed ( maxN ) 2500  rpm  

Supply pressure ( sP ) 6105.14 ×  Pa  
Directional control valve parameters 

Discharge coefficient ( dC ) 61.0   
Diameter of ports ( d ) 525.9  mm  
Maximum flow rate ( maxQ ) 40  min/lit  
Maximum operating pressure ( maxP ) 6100.35 ×  Pa  

Hydraulic fluid parameters 
Bulk mudulus (β ) 9106.1 ×  Pa  
Fluid density ( ρ ) 850  3/ mKg  
Fluid absolute  viscosity (μ ) at C025  4109.7 −×  sm /2  
 
 
 
 

To simulate the state responses of the hydraulic cylinder from bond graph model,

the causal bond graph model of the hydraulic cylinder shown in Figure 4.14 under

no load FL = 0, was first converted into block diagram using the Fakri method [32].

The block diagram representing the bond graph was then simulated on SIMULINK

to obtain the state responses of the hydraulic cylinder on extension/retraction and

under no load.

The ODE model of a hydraulic cylinder developed by Nguyen [11] based on first

principles of the basic laws of mass continuity (continuity Equation) and the Equa-

tion of motion for mechanical moving parts (Newton’s second law), has the following

state space representation;
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ẏ1 = y2 (4.24)

ẏ2 =
1

Mp

[
y3Ap − y4(Ap − Ar)−

µπDpLp

c
y2 − FL

]
(4.25)

ẏ3 =
β

Apy1

[
CdAO(yv)

√
2

ρ
(PS − y3)− Apy2 − Cip(y3 − y4)

]
(4.26)

ẏ4 =
β

(Ap − Ar)(Lcy − Lp − y1)

[
− CdAO(yv)

√
2

ρ
y4 + (Ap − Ar)y2

−Cip(y3 − y4)
]

(4.27)

where a state vector was defined as;

y1

y2

y3

y4


=



x

ẋ

PA

PB


(4.28)

Equations 4.24 to 4.27 can be solved using MATLAB ODE-solvers, and then the

state responses simulated. The open loop state responses of the cylinder on extension

and retraction are shown in Figures 4.15, and 4.16 respectively.
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Figure 4.15: Simulated open loop responses of the arm cylinder for extension case;

(a) Head side chamber pressure (b) Rod side chamber pressure (c)

Piston displacement (d) Piston velocity

Such a fast response of approximately 0.002 seconds for the cylinder states can

be explained by the fact that the cylinder is moving no load and the spool valve is

assumed to be completely open at the start of the simulation. Further interpretation

of the state responses is not done simply because the idea of simulating the models

at this stage was to compare the simulation results of the bond graph model to those

of the ODE model. The results are seen to compare favorably, and now the hydraulic

model can be confidently integrated to the manipulator’s mechanical model.
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Figure 4.16: Simulated open loop responses of the arm cylinder for retraction

case; (a) Head side chamber pressure (b) Rod side chamber pressure

(c) Piston displacement (d) Piston velocity

4.3 Inter-Actuator Interaction

Among the characteristics which must be captured by the dynamic model of a mo-

bile hydro-mechanical system with an articulated arm are the actuator interactions

which are important since they significantly affect the overall response of the sys-

tem [51]. The interaction between the different actuators occurs due to the fact

that they are powered by a single power engine. When multiple actuators request

flow simultaneously, the power demand may exceed the capacity of the engine. The

hydraulic system is forced to reduce the flow to the cylinders to keep the engine
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from stalling. Therefore the actuator interaction is an important part of system

dynamics and must be modeled.

Singh et al. [52] used a simple approach to handle the flow distribution between

multiple hydraulic actuators. The authors assumed a fixed pump flow (even though

pumps vary their output), and assumed that the circuit with a valve closest to the

pump gets all the flow it requires, and that the remaining flow is distributed among

the rest. This approach is valid when the cylinders have similar force loads, but not

when the cylinders have very different force loads. There is no literature available

on how to model the flow distribution of multiple cylinders without resorting to

detailed model. The following approach addresses this shortcoming.

The hydraulic actuators driving the manipulator links are powered by one pump.

Since the pump is modeled as a constant pressure supply, it supplies a constant

pressure to all cylinders regardless of the flow demand across each actuator. There-

fore an Effort Source with constant pressure as the source (that is, SE : PS), is

connected to the zero junction from which the cylinders are supplied with constant

pressure.

To demonstrate the inter-actuator interaction, two cylinders being driven by one

hydraulic pump as shown in Figure 4.17 are considered. The bond graph model

representing the actuators is shown in Figure 4.18.

70
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Figure 4.17: Hydraulic circuit for two cylinders powered by one pump

Using the parameters of the boom and arm cylinders as given in Table 4.1 together

with hydraulic parameters in Table 4.2, the open loop responses of the hydraulic

actuators under step inputs are simulated for four cases, that is,

Case 1 When the two cylinders are moving no load and their directional control

valves are equally displaced.

Case 2 When the two cylinders are moving no load and one directional control

valve, i.e., for cylinder 1 is closed.

Case 3 When the cylinders are moving no load and the step inputs to the cylinders

are different.

Case 4 When the two cylinders are moving different loads.

Four open loop state responses of the cylinders, that is, chamber pressures, fluid flow

rates, piston velocities, and piston displacements (the integral of piston velocities),
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Figure 4.18: Bond graph models of two hydraulic cylinders powered by one pump

were simulated to show how the dynamics of the two cylinders interacted during the

hydraulic system performance under the above conditions.

Case 1

In this case the two cylinders were given equal step inputs equivalent to the maxi-

mum spool valve displacements, and their open loop responses simulated when the

cylinders were assumed to move no load.

As seen in Figure 4.19, the only difference between the response curves of the two

cylinders is the speed of response. Cylinder 2 which has a smaller piston and rod

mass, has a fast response compared to cylinder 1 which has a relatively larger piston
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Figure 4.19: Simulated open loop responses for case 1; (a) Piston displacements

(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders

(e) Head sides chamber pressures (f) Rod side chamber pressures

and rod mass. This is what is expected practically since a body with a large mass

has a consequent large inertia which slows down the response speed to movements.

Case 2

In this case, the spool valve controlling cylinder 1 remained closed while cylinder 2

was given a step input equivalent to the maximum spool valve displacement. Also

the two cylinders were assumed to move no load.
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Figure 4.20: Simulated open loop responses for case 2; (a) Piston displacements

(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders

(e) Head sides chamber pressures (f) Rod side chamber pressures

As seen in Figure 4.20(d), there is no fluid flow to cylinder 1 since the spool valve

controlling this cylinder is closed. Due to this, there is no hydraulic pressures gener-

ated in cylinder 1 chambers as shown in Figures 4.20(e) and (f), and subsequently

the piston of cylinder 1 remains stationary as illustrated in Figure 4.20(a) and (b).

The pump produces only the flow required to operate cylinder 2. This flow creates a

pressure drop across cylinder 1 which moves the piston of the cylinder. This is what

is expected practically, since a hydraulic cylinder whose spool valve is completely

closed, has no flow into it and subsequently no motion results, hence no response.
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Case 3

In this case, cylinder 2 was given a step input equivalent to the maximum spool

displacement, while cylinder 1 was given a step input equivalent to half of the

maximum spool displacement. This implies that, the spool valve controlling cylinder

2 had a wider orifice opening than the one controlling cylinder 1.
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Figure 4.21: Simulated open loop responses for case 3; (a) Piston displacements

(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders

(e) Head sides chamber pressures (f) Rod side chamber pressures

As seen in Figure 4.21(d), cylinder 2 whose directional control valve has a wider

orifice opening area receives much fluid flow from the pump as compared to cylinder
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1. This is because the larger the area of the orifice, the smaller the valve resistance

to fluid flow, and since the flow rate through the valve is inversely proportional

to the valve resistance as evident in Equation 4.12, then it follows that, flow rate

through the valve is higher for large orifice openings. This larger flow to cylinder 2

results in faster pressure accumulation in the cylinder chambers as shown in Figures

4.21(e) and (f), and this subsequently leads to high piston speeds as evident in

Figure 4.21(b).

Case 4

In this case, both cylinders were given similar step inputs equivalent to maximum

spool displacements, while the cylinder rods moved different external and transla-

tional loads.

Cylinder 1 moves a half of the force moved by cylinder 2. A large pressure drop is

required by cylinder 2 so as to produce a force big enough to move the large external

load. This large pressure drop for cylinder 2 is evident in Figures 4.22(e) and (f)

as compared to a relatively smaller pressure drop required to move a lighter load by

cylinder 1. Since the external force to be moved offers a resistance to fluid flow to

the actuators, then it follows that the larger the load to be moved, the smaller the

fluid flow to the cylinder. This is the reason why fluid flow to cylinder 2 is relatively

small compared to the flow to cylinder 1 as shown in Figure 4.22(d). This difference

in fluid flow rates to the cylinders results in different cylinder piston speeds as shown

in Figures 4.22(b) with a large piston velocity produced by the cylinder moving the

smaller load.
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Figure 4.22: Simulated open loop responses for case 4; (a) Piston displacements

(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders

(e) Head sides chamber pressures (f) Rod side chamber pressures

In conclusion, it is seen from the above analysis that, representing the multi-cylinder

hydraulic system bond graph models as shown in Figure 4.18, can predict what is

practically expected regarding the inter-actuator interaction. Although such as-

sumption is expected to give an error in state responses, since for several cylinders

operating simultaneously, each one of them has its own requirement for supply pres-

sure depending on the load and speed required from it, but for simplicity it was

assumed that the supply pressure for all the cylinders are equal and constant.
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CHAPTER 5

DYNAMIC COUPLING OF THE MECHANICAL AND HYDRAULIC

MODELS OF THE EXCAVATOR

5.1 Introduction

The objective of modeling the excavator is to predict the dynamic behavior of the

excavating mechanism by combining actuator and manipulator dynamics. Hydraulic

cylinders are used to actuate the manipulator joints. They generate forces necessary

for boom, arm and bucket motion. These forces are determined by the pressures of

the chambers in each actuator, and these pressures, in turn, are determined by the

velocity and displacement of the actuator which are calculated from the mechanical

dynamics of the excavator [5]. Therefore, it is in these actuators where the dynamic

coupling between the mechanical and hydraulic system model of the excavator takes

place. Figure 5.1 shows this relationship schematically.

                                                                         F 
                                                                           
 
                                                          
                                                                      x, dx/dt                                                               
 
                                                        F: Hydraulic cylinder force. 
                                                     x, dx/dy: Displacement and velocity of the cylinder.              
                                                                                  

Hydraulic 
Subsystem 

Mechanical 
Subsystem 

Figure 5.1: Dynamic coupling between the mechanical and hydraulic systems of

an excavator

The dynamic models of the manipulator linkage and hydraulic systems of the exca-

vator have been developed in Chapters 3 and 4. From the knowledge of manipulator

78



dynamics, we have the following well known relations.

Ẋ = Jq̇ (5.1)

τ = JT F (5.2)

Where X is the vector of piston displacements, Ẋ is the vector of piston velocities,

q is the vector of manipulator joint angles, F includes the forces generated by actu-

ators, and τ is the vector of corresponding torques at the manipulator joints. Since

boom, arm, and the bucket links are independently actuated, the jacobian matrix

J is a diagonal matrix, hence Equation 5.1 can be written as;
ẋbo

ẋa

ẋbu

 =


r19 0 0

0 r20 0

0 0 r21




θ̇2

θ̇3

θ̇4

 (5.3)

Where ẋbo, ẋa and ẋbu are the velocities of the pistons of the boom, arm, and bucket

cylinders respectively.

5.2 Deriving the Jacobi Expressions for the Manipulator

The diagonal elements of the Jacobi matrix in Equation 5.3 can be treated as mod-

ulated transformer elements in bond graph method since they relate the input and

output flow variables in a junction, that is, they transform the angular velocity

to the linear velocity of the pistons, and their magnitudes depend on the angular

positions of the links.

The length of an hydraulic actuator can be specified by a line segment between the

attachment points as shown in Figure 3.1. Therefore;
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LBE is the instantaneous length of the boom cylinder

LFI is the instantaneous length of the arm cylinder and

LJK is the instantaneous length of the bucket cylinder.

5.2.1 Boom Link

This is actuated by the boom cylinder which moves joint 2. The equation relating

the length of the hydraulic cylinder LBE, to the joint variable θ2 is presented next.

Consider Figure 5.2 which is obtained from Figure 3.1.

H

A

E

B

C

1β

12 βθ −

2θ

)cos( 12 βθ −ABL

)sin( 12 βθ −ABL

HEL

AHL

Figure 5.2: Boom cylinder length
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Equation 5.4 shows how the length of actuator LBE is related to the joint angle θ2;

L2
BE = [LAB sin(θ2 − β1) + LAH ]2 + [LAB cos(θ2 − β1)− LHE]2 (5.4)

from which LBE is obtained as,

LBE =
[
L2

AB sin2(θ2 − β1) + 2LABLAH sin(θ2 − β1) + L2
AH + L2

AB cos2(θ2 − β1)

−2LABLHE cos(θ2 − β1) + L2
HE

] 1
2

(5.5)

where

β1 is a constant angle < BAC

LAB, LAH and LHE have constant values obtained from the manipulator’s geometry.

To determine the relationship between the joint angular velocity (θ̇2) to the rate in

which the boom cylinder length is changing (L̇BE), Equation 5.5 is differentiated

with respect to time to get;

L̇BE = θ̇2
LABLAH cos(θ2 − β1) + LABLHE sin(θ2 − β1)√

[LAB sin(θ2 − β1) + LAH ]2 + [LAB cos(θ2 − β1)− LHE]2
(5.6)

The rate in which the boom cylinder is changing (L̇BE) is equal to the piston velocity

of the boom cylinder (ẋbo). Therefore;

ẋbo = r19θ̇2 (5.7)

where

r19 =
LABLAH cos(θ2 − β1) + LABLHE sin(θ2 − β1)√

[LAB sin(θ2 − β1) + LAH ]2 + [LAB cos(θ2 − β1)− LHE]2
(5.8)

Equation 5.7 is the kinematic equation illustrating how the hydro-mechanical dy-

namics of the boom link are coupled. This can be represented in bond graph form

as shown in Figure 5.3.
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Figure 5.3: Coupling the hydro-mechanical dynamics of the boom link

5.2.2 Arm Link

This is actuated by the arm cylinder which moves joint 3. The equation relating

the length of the hydraulic cylinder LFI , to the joint variable θ3 is presented next.

Consider Figure 5.4 which is obtained from Figure 3.1.

A

C

2β

4β

I

F

X

3θ

3360 θ−

2y

2x

D

Figure 5.4: Arm cylinder length
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Let AĈI = β2 and FĈD = β4, therefore;

FĈI = XĈF + XĈI = (180− β4) + (360− θ3 − β2)

= 540− θ3 − β2 − β4 (5.9)

Using cosine rule on triangle FCI we get;

L2
FI = L2

FC + L2
CI − 2LFCLCI cos(540− θ3 − β2 − β4) (5.10)

from which LFI is obtained as

LFI = LFC

√
1 +

L2
CI

L2
FC

− 2
LCI

LFC

cos
(
(540− β2 − β4)− θ3

)
(5.11)

To determine the relationship between the joint angular velocity (θ̇3) to the rate

in which the arm cylinder length is changing (L̇FI), Equation 5.11 is differentiated

with respect to time to get;

L̇FI = θ̇3

−LCI sin
(
(540− β2 − β4)− θ3

)
√

1 +
L2

CI

L2
FC

− 2 LCI

LFC
cos

(
(540− β2 − β4)− θ3

) (5.12)

The rate in which the length of arm cylinder is changing (L̇FI) is equal to the piston

velocity of the arm cylinder (ẋa). Therefore;

ẋa = r20θ̇3 (5.13)

Where

r20 =
−LCI sin

(
(540− β2 − β4)− θ3

)
√

1 +
L2

CI

L2
FC

− 2 LCI

LFC
cos

(
(540− β2 − β4)− θ3

) (5.14)

Equation 5.13 is the kinematic equation illustrating how the hydro-mechanical dy-

namics of the arm link are coupled. This can be represented in bond graph form as

shown in Figure 5.5.
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Figure 5.5: Coupling the hydro-mechanical dynamics of the arm link

5.2.3 Bucket Link

This is actuated by the bucket cylinder which moves joint 4. The equation relating

the length of the hydraulic cylinder LJK , to the joint variable θ4 is presented next.

Consider Figure 5.6 which is obtained from Figure 3.1.

                                                                                 J 
 
 
 
 
                      C 
 
                                                                                                              y3 
 
                                                                                                    K     
                                                                                      L              
                                                                                           
                                                                                                               G  
                                                                                                D           
                                                                          N 
 
                                                        x4                                                                       x3 

 

                                                                                                                                y4      

Figure 5.6: Bucket cylinder length

Applying cosine rule in triangle JKL, we get;

L2
JK = L2

JL + L2
KL − 2LJLLKL cos(ν1 − ε1) (5.15)

where;
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ν1 =< JLD have constant value and can be obtained from manipulator’s geometry

ε1 =< KLD.

Summing angles along axis 4, we get;

< LDG = π− < x3DN− < CDL− < GDN

= π − θ4 − ν2 − ν3 (5.16)

Summing angles in the quadrangle KLDG gives;

2π = < KLD+ < KGD+ < LDG + LKG

By defining ε2 =< KGD and ε3 =< LKG, a relation between ε1 and θ4 is obtained

as;

2π = ε1 + ε2 + (−θ4 + π − ν2 − ν3) + ε3

θ4 = −π − ν2 − ν3 + ε1 + ε2 + ε3 (5.17)

From Equation 5.17, ε1 is expressed in terms of θ4 as;

ε1 = θ4 + π + ν2 + ν3 − ε2 − ε3 (5.18)

Substituting Equation 5.18 in Equation 5.15 we get;

L2
JK = L2

JL + L2
KL − 2LJLLKL cos(ν1 − ν2 − ν3 − π + ε2 + ε3 − θ4) (5.19)

from which LJK is obtained as;

LJK = LJL

[
1 +

L2
KL

L2
JL

− 2
LKL

LJL

cos(ν1 − ν2 − ν3 − π + ε2 + ε3 − θ4)
] 1

2
(5.20)
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To determine the relationship between the joint angular velocity (θ̇4) to the rate in

which the cylinder piston is changing (L̇JK), Equation 5.20 is differentiated with

respect to time to get;

L̇JK = θ̇4
−LKL sin(ν1 − ν2 − ν3 − π + ε2 + ε3 − θ4)√

1 +
L2

KL

L2
JL

− 2LKL

LJL
cos(ν1 − ν2 − ν3 − π + ε2 + ε3 − θ4)

(5.21)

The rate in which the length of bucket cylinder is changing (L̇JK) is to the piston

velocity of the bucket cylinder (ẋbu). Therefore;

ẋbu = r21θ̇4 (5.22)

Where

r21 =
−LKL sin(ν1 − ν2 − ν3 − π + ε2 + ε3 − θ4)√

1 +
L2

KL

L2
JL

− 2LKL

LJL
cos(ν1 − ν2 − ν3 − π + ε2 + ε3 − θ4)

(5.23)

Equation 5.22 is the kinematic equation illustrating how the hydro-mechanical dy-

namics of the bucket link are coupled. This can be represented in bond graph form

as shown in Figure 5.7.

Figure 5.7: Coupling the hydro-mechanical dynamics of the bucket link

5.3 Overall Bond Graph Model of the Hydraulic and Mechanical Dy-

namics

Figure 5.8 shows the overall non-causal bond graph model representing the interac-

tion of mechanical and hydraulic dynamics of the excavator.
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Figure 5.8: Non-causal bond graph model of the excavating mechanism

Assigning causality to the non causal bond graph model shown in Figure 5.8, led

to derivative causality for both the vertical and horizontal momenta of the boom,

arm and bucket links. This means that the assumptions made in constructing this

model have led to a model that will not compute easily with a computer. This is not
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a fault of bond graphs, but would be true regardless of one’s approach to modeling

subject to the same assumptions.

To fix this derivative causality problem easily, the ’Karnopp-Margolis’ method [26]

of appending very stiff springs and dampers at the pin joints of the manipulator links

was used. These are pointed out in Figure 5.9. This allowed a causal bond graph

to result with straight-forward simulation properties, that is, integral causality in

all the capacitive and inertial elements of the bond graph model. In practice, these

additional elements are selected to produce frequencies well outside the range of

interest. In this case, elements were chosen to produce 200Hz frequencies since we

are interested in frequencies no higher than 20Hz and no modal dynamics have been

included for any of the mechanical or fluid parts of the system.

At this point, we have a causal bond graph model of the excavating manipulator

given in Figure 5.9. This model would predict the motion-time history of the system

for any inputs y to the cylinder valves actuating the manipulator links.
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Figure 5.9: Causal bond graph model of the excavating mechanism
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CHAPTER 6

SYSTEM ANALYSIS AND DESIGN USING INVERSE DYNAMICS

6.1 Introduction

In inverse dynamics, the generalized joint torques are computed given the desired

joint trajectories. The desired joint trajectories are obtained through the trajectory

planning schemes which generally interpolate or approximate the desired manipula-

tor path by a class of polynomial functions and generates a sequence of time-based

set-points for the manipulator from the initial position and orientation to its desti-

nation [16]. Two cases are considered, that is, when the manipulator is moving in a

free space, and when the bucket is digging a sandy-loom soil. As described in [10],

all the cylinders are considered to be extending during the digging operation.

6.2 Parameter Identification

In the previous chapters, a dynamic bond graph model representing the hydro-

mechanical dynamics of the system was developed. However good mathematical

models depend not only on the structure of the equations, but also on the values of

physical parameters involved. Therefore parameter identification can be considered

as part of the process of constructing valid mathematical and graphical models for

dynamic systems.

Parameters like lengths, masses and angles were found from design drawings and

trigonometric calculations. But parameters like the location of a center of mass,

link moments of inertia, products of inertia of a link could not be estimated from

blueprints. Fortunately, solid modeling techniques can be used to determine the lo-

cation of mass centers, moments and products of inertia very accurately. Auto CAD
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with Advanced Modeling Extension Package was used to estimate mass properties

of all the links and the locations of center of masses.

The cylinder and hydraulic initial design parameters are given given in Tables 4.1

and 4.2 respectively. The initial design parameters for the boom, bucket and arm

links are given in Tables 6.1, 6.2 and 6.3 respectively.

6.2.1 Boom Link Parameters

2G

AO ,1 CO ,2

B

I

1σ

1β

H E
0β

Figure 6.1: Schematic diagram of the boom link
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Table 6.1: Boom link geometric parameters

Parameter description Units Value 
Length from 1O  to 2O ,                  

21OOL  mm  1160  

Length from 2G  to 2O ,                  
22OGL  mm  5.566  

Length from H  to E ,                    HEL  mm  75  
Length from A  to B ,                     ABL  mm  97.328  
Length from A  to H ,                    AHL  mm  3.823  
Length from A  to E ,                     AEL  mm  7.856  
Angle AEH< ,                                0β  )deg(0  8.84  
Angle BAC< ,                                 1β  )deg(0  23.9  
Angle 122 OOG< ,                             1σ  )deg(0  87.8  
Mass of the link,                              2M  Kg  66.14  
Mass inertia about the centroid,       2J  2/ mKg  55.1  
 

6.2.2 Bucket Link Parameters
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Figure 6.2: Schematic diagram of the bucket link
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Table 6.2: Bucket link geometric parameters

Parameter description Units Value 
Length from 3O  to 4O ,                  

43OOL  mm  570  

Length from 4G  to 4O ,                  
44OGL  mm  68.475  

Length from K  to G ,                    KGL  mm  141 
Length from D  to L ,                     DLL  mm  100  
Length from G  to D ,                    GDL  mm  130  
Length from K  to L ,                     KLL  mm  147  
Length from J  to L ,                     JLL  mm  06.683  
Angle JLD< ,                                 1υ  )deg(0  22.176  
Angle CDL< ,                                 2υ  )deg(0  71.5  
Angle GDN< ,                                3υ  )deg(0  67.47  
Angle JDL< ,                                 5β  )deg(0  295.3  
Angle 344 OOG< ,                             3σ  )deg(0  69.17  
Mass of the link,                              4M  Kg  37.15  
Mass inertia about the centroid,       4J  2/ mKg  43.1  
 

6.2.3 Arm Link Parameters
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Figure 6.3: Schematic diagram of the arm link

93



Table 6.3: Arm link geometric parameters

Parameter description Units Value 
Length from 2O  to 3O ,                  

32OOL  mm  55.1102  

Length from 3G  to 3O ,                  
33OGL  mm  43.654  

Length from F  to C ,                    FCL  mm  200  
Length from C  to I ,                     CIL  mm  53.637  
Angle ACI< ,                                 2β  )deg(0  86.28  
Angle FCD< ,                                4β  )deg(0  29.174  
Angle 233 OOG< ,                            2σ  )deg(0  68.2  
Mass of the link,                              3M  Kg  92.13  
Mass inertia about the centroid,       3J  2/ mKg  0109.1  
 

6.3 Trajectory Planning

In a typical trajectory, all joints move simultaneously. For the typical trajectory

selected here, the boom, arm, and bucket links move from their minimum to max-

imum positions and all joints start and finish moving at the same time, although

different time limits can be programmed.

Three common trajectories namely, trapezoidal trajectory, cubic polynomial trajec-

tory, and quintic polynomial trajectory have been previously applied in trajectory

planning for hydraulic manipulators. Sarkar [44] used the three trajectories to size

the valves and power requirement for an articulated forestry machine. Among the

three methods, the quintic polynomial trajectory has advantage in that;

• the velocity trajectory is smooth unlike in trapezoidal trajectory whose velocity

profile has discontinuities where the link motion starts to settle at a constant

velocity, and where the link starts to decelerate.
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• the acceleration profile has values equal to zero at starting and finishing times

of the trajectory, unlike in the other trajectories where the acceleration values

at the start and final times have non zero values.

Therefore the trajectory to be adopted in this work is the quintic polynomial tra-

jectory which is given by;

x(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 (6.1)

The desired boundary conditions are;

xt=0 = xmin (6.2)

xt=tf = xmax (6.3)

ẋt=0 = 0 (6.4)

ẋt=tf = 0 (6.5)

ẍt=0 = 0 (6.6)

ẍt=tf = 0 (6.7)

By taking the first and second derivatives of Equation 6.1 and satisfying the bound-

ary conditions the coefficients of the polynomial are obtained as;

a1 = 0 (6.8)

a2 = 0 (6.9)

a3 =
10(xmax − xmin)

t3f
(6.10)

a4 =
15(xmin − xmax)

t4f
(6.11)

a5 =
6(xmax − xmin)

t5f
(6.12)
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Substituting the coefficients in the polynomial Equation 6.1 and its first and sec-

ond time derivative, we get the required displacement, velocity and acceleration

trajectories as;

x(t) = xmin +
10(xmax − xmin)

t3f
t3 +

15(xmin − xmax)

t4f
t4

+
6(xmax − xmin)

t5f
t5 (6.13)

ẋ(t) =
30(xmax − xmin)

t3f
t2 +

60(xmin − xmax)

t4f
t3 +

30(xmax − xmin)

t5f
t4 (6.14)

ẍ(t) =
60(xmax − xmin)

t3f
t +

180(xmin − xmax)

t4f
t2 +

120(xmax − xmin)

t5f
t3 (6.15)

Equations 6.13, 6.14 and 6.15 can be applied to the boom, arm and bucket links to

obtain their displacement, velocity and acceleration quintic polynomial trajectories

as shown in Figures 6.4, 6.5 and 6.6 respectively for case ERR as illustrated in

section 6.5.
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Figure 6.4: (a) Boom link’s angular displacement trajectory (b) Arm link’s

angular displacement trajectory (c) Bucket link’s angular

displacement trajectory
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Figure 6.5: (a) Boom link’s angular velocity trajectory (b) Arm link’s angular

velocity trajectory (c) Bucket link’s angular velocity trajectory
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Figure 6.6: (a) Boom link’s angular acceleration trajectory (b) Arm link’s

angular acceleration trajectory (c) Bucket link’s angular acceleration

trajectory

6.4 Simulink Model for the Inverse Dynamics of the 3 DOF System

Figure 6.7 shows the complete Simulink model of the inverse dynamics of 3dof exca-

vating manipulator. This model is the test-bed for all inverse dynamics simulations

done on the system. The whole system is run in the same time frame, and as a

result the outputs must match the generated trajectories.

The joint trajectory generator block produces the desired boom, arm and bucket

97



joint_traje

joint trajectory generator

theta traj

piston traj

Jf

joint to piston level

joint traj joint torque

inverse dynamics
flow_rates

To Workspace7

torques

To Workspace5
power

To Workspace4

thetas

To Workspace3

cylinder_forces

To Workspace2

pressure_drops

To Workspace1

cyl force

piston traj

pressure drops

flow rates

Hydraulics

emu

emu

emu

em

|u|

|u|
|u|

Figure 6.7: The overall Simulink block for the inverse dynamics

quintic polynomial trajectories, that is, the angular displacements, angular veloci-

ties and angular accelerations of the links which are shown in Figures 6.4, 6.5 and

6.6. The three signals from the joint trajectory generator block each containing the

corresponding signals for the boom, arm and bucket link are fed into the inverse

dynamics block shown in Figure 6.8 to compute the joint torques using Equations

6.16, 6.17 and 6.18 for the bucket, arm and boom links respectively.

As seen in Equations 6.16, 6.17 and 6.18, the joint torques depend on the modulated

transformer ratios (r1 to r12) and the centroid velocities of the links (vG2x, vG2y,

vG3x, vG3y, vG4x and vG4y). Also the centroid velocities depend on the modulated

transformer ratios and the joint angular velocities of the links as illustrated in section
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Figure 6.8: The Simulink block for computing the joint torques using inverse

dynamics

3.1.2. The ratios are computated in the modulated transformer ratio block.

The outputs from the modulated transformer ratios block are input to the Link COG

block for purposes of computing the centroid velocities of the links, which together

with the ratios are input into the Boom link block, Arm link block and Bucket link

block to determine the joint torque for the corresponding link. This is shown in

Figure 6.8.

Also the output from the joint trajectory generator block is fed to the joint to piston

level block as shown in Figure 6.7 where the joint trajectories are converted to
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actuator piston trajectories using the relationships in Equations 5.5, 5.6, 5.11, 5.12,

5.20, and 5.21.

6.5 Torque Profiles

From the bond graph model represented in Figure 3.12 inverse dynamics can be

performed on the manipulator to compute the torque-time history applied at the

three joints of the system in order to accomplish the quintic polynomial trajectory

planned for the three links. The torque equations obtained from the bond graph

model are;

Bucket link

τbu = J4(θ̈2 + θ̈3 + θ̈4) + r12

(
M4

d(vG4y)

dt
+ M4g

)
+ r9M4

d(vG4x)

dt
(6.16)

Arm link

τa = J3(θ̈2 + θ̈3) + J4(θ̈2 + θ̈3 + θ̈4) + r6

(
M3

d(vG3y)

dt
+ M3g

)
+ r4M3

d(vG3x)

dt

+ r8M4
d(vG4x)

dt
+ r11

(
M4

d(vG4y)

dt
+ M4g

)
(6.17)

Boom link

τa = J2θ̈2 + J3(θ̈2 + θ̈3) + J4(θ̈2 + θ̈3 + θ̈4) + r5

(
M3

d(vG3y)

dt
+ M3g

)
+ r3M3

d(vG3x)

dt

+ r7M4
d(vG4x)

dt
+ r10

(
M4

d(vG4y)

dt
+ M4g

)
+ r1M2

d(vG2x)

dt

+ r2

(
M2

d(vG2y)

dt
+ M2g

)
(6.18)

Where all the parameters are as defined in section 3.1. Since all the time histories

of the joint variables, that is, the joint displacements, the joint velocities, and the

joint accelerations are known from the trajectory planning, Equations 6.16, 6.17 and
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6.18 can be utilized to compute the applied torques as a function of time which are

required to produce the particular planned manipulator motion.

Table 6.4 shows the eight (8) possible cases of the manipulator link motions which

were considered so as to determine which case gives the critical torque profile when

the manipulator is moving in free space.

Table 6.4: Manipulator motion cases

 

 

Case Boom cylinder Arm cylinder Bucket cylinder 
Case EEE Extending Extending Extending 
Case EER Extending Extending Retracting 
Case ERE Extending Retracting Extending 
Case REE Retracting Extending Extending 
Case ERR Extending Retracting Retracting 
Case RER Retracting Extending Retracting 
Case RRE Retracting Retracting Extending 
Case RRR Retracting Retracting Retracting 

The joint torque profiles required to accomplish the trajectories planned for the

eight cases of the manipulator motion as shown in Table 6.4, were simulated and

the ERR and REE cases were found to give the same highest values of the torques

for all the link joints as depicted in Figures 6.9 and 6.10.
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Figure 6.9: The torque profiles at joints, when the manipulator is moving in a free

space and for REE case; (a) Boom joint torque (b) Arm joint torque

(c) Bucket joint torque
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Figure 6.10: The torque profiles at joints, when the manipulator is moving in a

free space and for ERR case; (a) Boom joint torque (b) Arm joint

torque (c) Bucket joint torque

By observing the nature of the torque profiles, it is seen that,

• The values for the boom torque are the largest followed by those for the arm.

This is attributed to the fact that the boom supports the arm which subse-

quently supports the bucket, therefore the torque which is needed to move the

boom link is logically the largest.
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• Unlike for the arm and bucket, the boom torque does not move from positive

to negative. This is due to the configuration of the boom and the joint limits,

that is, there is no instant during the manipulator motion when the boom

link takes a vertical position. This is contrary to the arm and bucket links

which during manipulator motion, they can both take a vertical position hence

making the direction of motion of the links to change relative to gravity.

For the REE case, all the links are at their highest positions at the start of the

manipulator motion. Due to this the gravitational effects of the arm and bucket

links to the boom link and also the gravitational effect of the bucket link to the arm

link are high, therefore large torques are required to initiate motions of the boom

and arm links. As motion kicks off, the torques on the boom and arm decreases

because the motions of the links are assisted by the gravity. At the end of the

manipulator motion, the links take the position and orientation which is the initial

orientation for the ERR case, therefore the reverse of what happens in REE case is

true for the ERR case.

In conclusion therefore, the cases which lead to highest joint torque requirements

are the REE and ERR, and the choice of any of the two cases will reflect the critical

condition of the manipulator motion under no loading condition. For the analysis

we decide to use the case ERR, and therefore the proceeding profiles represent the

case ERR, unless mentioned otherwise.

The joint torque profiles when the bucket is digging a sandy-loom soil is shown in

Figure 6.11.
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Figure 6.11: The torque profiles at manipulator joints, when the bucket is digging

a sandy-loom soil; (a) Boom joint torque (b) Arm joint torque (c)

Bucket joint torque

6.6 Power Profiles

The dynamic model obtained also permits either sizing of the system power supply

or checking whether the desired manipulator trajectory can be followed without

exceeding the power capacity of the supply. The power required for the boom, arm

and bucket motion is respectively given as;

Pbo = τboθ̇2 (6.19)

Pa = τaθ̇3 (6.20)

Pbu = τbuθ̇4 (6.21)

Where τ is the torque required to move a link at an angular velocity of θ̇. The total

power required for a given trajectory can be obtained by;

Ptotal = |Pbo|+ |Pa|+ |Pbu| (6.22)
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assuming there are no power losses. The power requirement profiles for the manip-

ulator are given in Figures 6.12 and 6.13 for the two cases.
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Figure 6.12: (a) Boom joint power (b) Arm joint power (c) Bucket joint power

(d) Total joints power ;when the manipulator is moving in free space

and at the initial cycle times

It is clear that when the manipulator is moving in a free space, the total power

consumption is much lower than when the bucket of the manipulator is digging a

sandy-loom soil. The peak value for the total power consumption when the bucket

is digging a sandy-loom soil is shown to be approximately 5kW (6.7hp). This value

is greater than the power rating of the engine (6.5hp) which is to drive the hydraulic

pump, implying that, the digging operation cannot be achieved under the given link

trajectories without exceeding the power capacity of the prime mover.
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Figure 6.13: (a) Boom joint power (b) Arm joint power (c) Bucket joint power

(d) Total joints power ;when the bucket is digging a sandy-loom soil

and at the initial cycle times

The power consumption as seen in Equations 6.19 through 6.22 depends on the

joint torque requirements and the angular velocities of the links. Two options are

available to reduce the total power requirement of the manipulator. These are;

• Reduce the joint torque requirements for the manipulator, by reducing the

mass properties of the links and/or reducing the force exerted to the ground

by the bucket.

• Increase the cycle times of the link trajectories. This means that the pump

flow rate capacity will be reduced.
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In this work, the second option of increasing the cycle times of the link trajectories

was used. Generally, the cycle time has a direct impact on the flow rate requirements

relative to the link/actuator motion requirements, and on the power requirement of

the manipulator. As seen in Equation 6.14 increasing the cycle time tf will decrease

the link velocities, and this will subsequently reduce the power requirement and also

the flow rates requirement.

The optimum cycle time necessary to ensure that the power requirement for the

manipulator motion when the bucket is digging a sandy-loom soil is reduced was

found to be 10s. Figure 6.14 shows the new power requirement profiles for the

manipulator.
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Figure 6.14: (a) Boom joint power (b) Arm joint power (c) Bucket joint power

(d) Total joints power ;when the manipulator is digging a

sandy-loom soil and at the optimal cycle times
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6.7 Force Profiles

From the inverse dynamics and in section 6.5, we have obtained the critical torque

profiles of the link motions when the manipulator is moving in free space as shown in

Figure 6.10, and also the torque profiles when the bucket of the excavator is digging

a sandy-loom soil as shown in Figure 6.11. Since the links of the manipulator are

driven by hydraulic actuators, we need a mapping from joint torque to cylinder force

using manipulator jacobians in Equations 5.8, 5.14 and 5.23. The force profiles for

the boom, arm and bucket cylinders for the two cases are plotted in Figures 6.15

and 6.16.
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Figure 6.15: (a) Boom cylinder force profile (b) Arm cylinder force profile (c)

Bucket cylinder force profile; when the manipulator is moving in a

free space
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Figure 6.16: (a) Boom cylinder force profile (b) Arm cylinder force profile (c)

Bucket cylinder force profile; when the bucket is digging a

sandy-loom soil

The reason why the arm and bucket force profiles move from positive to negative

is because the forces are related to the corresponding torques by the manipulator

jacobians. As illustrated in section 6.5, the torque profiles for the arm and bucket

links move from positive to negative.

6.8 Sizing the Hydraulic Actuators and Valves Based on Inverse Dy-

namics

An important application of the inverse dynamic modeling of hydro-mechanical sys-

tems is the sizing of hydraulic components. In this section, the optimal sizes of the

actuator pistons as well as the optimal sizes of the spool valve orifice ports of the

boom, arm, and bucket cylinders will be determined. For this purpose, the pressure

drop profiles across the cylinders and valves need to be plotted from the inverse

dynamics.
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6.8.1 Pressure Drop Profiles

The hydraulic forces required to produce the torques necessary for manipulator

motion results in corresponding pressure drops across the hydraulic cylinders. The

expressions for the pressure drop in the boom cylinder, ∆pbo, arm cylinder, ∆pa,

and bucket cylinder, ∆pbu are approximated using equations below;

∆pbo =
Fcybo

Apbo

(6.23)

∆pa =
Fcya

Apa

(6.24)

∆pbu =
Fcybu

Apbu

(6.25)

As shown in Equations 6.23, 6.24 and 6.25, the pressure drop across a given cylinder

is directly proportional to the hydraulic force of the corresponding cylinder. There-

fore, the nature of the pressure drop curve is the same with the hydraulic force

profile of the corresponding cylinder as shown in Figure 6.17 for the case when the

bucket is digging a sandy-loom soil.
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Figure 6.17: The Pressure drop profiles across the cylinders, when the bucket is

digging a sandy-loom soil and at original piston diameters; (a) Boom

cylinder (b) Arm cylinder (c) Bucket cylinder
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Neglecting line pressure drops, the pressure drops at the corresponding valves are

approximated as;

∆pbov = ps − |∆pbo| (6.26)

∆pav = ps − |∆pa| (6.27)

∆pbuv = ps − |∆pbu| (6.28)

Where ps is the operating pressure. The pressure drop profiles at the valves for the

case when the bucket is digging a sandy-loom soil is shown in Figure 6.18.

0 2 4 6 8 10
4

6

8

10

12

14
x 106 (a)

P
re

ss
ur

e 
dr

op
 (P

a)

Time(secs)
0 2 4 6 8 10

0.6

0.8

1

1.2

1.4

1.6
x 107 (b)

P
re

ss
ur

e 
dr

op
 (P

a)

Time(secs)
0 2 4 6 8 10

0.6

0.8

1

1.2

1.4

1.6
x 107 (c)

P
re

ss
ur

e 
dr

op
 (P

a)

Time(secs)

* * * 

Figure 6.18: The Pressure drop profiles across the cylinder valves, when the

bucket is digging a sandy-loom soil and at optimal piston diameters;

(a) Boom cylinder valve (b) Arm cylinder valve (c) Bucket cylinder

valve
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6.8.2 Actuator Sizing

As shown in Equations 6.23 through 6.25 the cross sectional area of the piston of a

cylinder determines the pressure drop across the cylinder during the working stroke,

which is considered to be the extension stroke. And from Equations 6.26 through

6.28 the maximum possible pressure drop (∆pmax) across a given cylinder should be

equal to the supply pressure (ps), that is,

∆pmax = ps (6.29)

• If ∆pmax < ps, then this implies that the supply pressure is not used maximally

and hence there is no need of such a high pump pressure since the cylinder is

oversized.

• If ∆pmax > ps, then the pressure drop across the valve becomes negative and

this will result to a negative flow rate through the valve. This is not possible

practically and implies that the cylinder is undersized.

The critical case to be considered in sizing the hydraulic cylinders is when the bucket

is exerting a digging force to the ground. As seen in Figure 6.17, the maximum

pressure drops across the cylinders (points with asterisks) are less than the supply

pressure of ps = 14.5MPa. This is also shown in Figure 6.18 where at the point

of maximum pressure drop for all the cylinders (points with asterisks), the pressure

drops across the corresponding valves do not equal to zero. Therefore it can be

concluded that the boom, arm and bucket cylinders are oversized.

The optimal cylinder piston sizes were determined by tuning the piston sizes until

that instant when the maximum pressure drops equaled the supply pressure for
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all the cylinders. These values were found to be precisely 52.2mm, 45.1mm and

40.9mm for the boom, arm and bucket cylinders respectively, as shown in Figure

6.19.
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Figure 6.19: The pressure drops versus piston diameters; (a) Boom cylinder

(b)Arm cylinder (c) Bucket cylinder

The resulting pressure drop curves are shown in Figures 6.20 and 6.21.
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Figure 6.20: The Pressure drop profiles across the cylinders, when the bucket is

digging a sandy-loom soil and at optimal piston diameters; (a) Boom

cylinder (b) Arm cylinder (c) Bucket cylinder
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Figure 6.21: The Pressure drop profiles across the cylinder valves, when the

bucket is digging a sandy-loom soil and at optimal piston diameters;

(a) Boom cylinder valve (b) Arm cylinder valve (c) Bucket cylinder

valve

The optimal piston diameters values of the cylinders were rounded to the next

imperial values which are available in the market as 21
4

”
(inches), 2”(inches) and

13
4

”
(inches) for the boom, arm and bucket cylinders respectively.

6.8.3 Flow Profiles

The fluid flow in the boom cylinder required to produce the desired boom link

trajectory, is given by;

Qbo = Apbo
ẋpbo

(6.30)

Where Qbo is the flow in the boom cylinder, Apbo
is the average area of the boom

piston, and ẋpbo
is the velocity of the boom piston.

Similarly, for the arm;

Qa = Apaẋpa (6.31)

Where Qa is the flow in the arm cylinder, Apa is the average area of the arm cylinder
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piston, and ẋpa is the velocity of the arm cylinder piston.

Similarly, for the bucket;

Qbu = Apbu
ẋpbu

(6.32)

Where Qbu is the flow in the bucket cylinder, Apbu
is the average area of the bucket

cylinder piston, and ẋpbu
is the velocity of the arm cylinder piston.

Figure 6.22 shows the flow in the actuators using a quintic polynomial trajectory for

all the joints when the bucket is digging sandy-loom soil and using the sized piston

diameters.
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Figure 6.22: (a) Total flow rate profile (b) Flow rate profile to boom cylinder (c)

Flow rate profile to arm cylinder (d) Flow rate profile to bucket

cylinder

As shown in Equations 6.30, 6.31 and 6.32, the fluid flow to a given cylinder is

directly proportional to the linear velocity of the corresponding cylinder piston.
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Therefore, the nature of the fluid flow curve is the same with the velocity profile of

the corresponding cylinder piston.

The pump flow is the summation of the fluid flow to all the three cylinders since the

manipulator links are assumed to move simultaneously. It is also seen that using the

pump with the sized flow rate capacity of 4.7×10−4m3/s (28lit/min), the engine of

the tractor is able to power the excavating mechanism in digging a sandy-loom soil.

6.8.4 Valve Sizing

According to typical industrial practice, valves are selected based on a nominal load

and duty cycle. However, no such nominal quantities exist for a manipulator arm

whose configuration changes continuously, and may be not loaded, or be loaded on

the bucket with scooped media and/or with digging forces. Therefore a systematic

methodology for valve sizing is needed.

A valve is properly sized when it can supply the demanded flow at the required

pressure drop across it. Therefore to size a valve, flow and pressure requirements

must be obtained as a function of time for a given task. Obviously, the task becomes

more demanding when the manipulator’s bucket is digging a trench.

The flow through the valves for the three actuators is obtained from Equations 6.30

through 6.32, while the pressure drops across the valves is obtained from Equations

6.26 through 6.28. The six equations can be used to plot valve flow versus valve

pressure drop for the desired end-point trajectories.

The resulting Q−∆p curve should lie below the valve pressure-flow characteristics

at full valve opening, Qv −∆pv, typically a curve described by a relationship of the
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form;

Qv = CdAO

√
2

ρ
∆pv (6.33)

Where;

Qv is the flow rate through a valve.

∆pv is the pressure drop across the valve.

Cd is the discharge coefficient.

ρ is the fluid density.

AO is the area of the orifice opening.

If Q−∆p curve does not lie below the valve pressure-flow characteristic curve at full

valve opening, then the pressure drop across the valve is less since the pressure drop

across the actuator is large. Therefore, the valve flow rate is not able to provide the

motion to the manipulator at the specified speed at a particular operating pressure.

In this case a valve of larger capacity must be specified, or the value of the operating

pressure increased. Figures 6.23 and 6.24, show the typical plots of such curves for

the two cases.
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Figure 6.23: Pressure drops versus flow curves, when the manipulator is moving in

a free space and at the initial sizes of the valve’s orifices; (a) Boom

cylinder valve (b) Arm cylinder valve (c) Bucket cylinder valve
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Figure 6.24: Pressure drops versus flow curves, when the bucket is digging a

sandy-loom soil and at the initial sizes of the valve’s orifices; (a)

Boom cylinder valve (b) Arm cylinder valve (c) Bucket cylinder

valve

As seen in Figures 6.23 and 6.24, the Q−∆p curves for all the cylinder valves and

for the two conditions are far below the valve characteristic curves, hence it can

be concluded that the manipulator will be able to operate with the selected valves,

although the valve orifice ports are seen to be oversized. An optimal orifice port
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size should ensure that the peak value of the Q − ∆p curve is well near the valve

characteristic curve.

The optimal orifice port sizes were determined by tuning the radii of the ports until

that instant when the peak values of the Q − ∆p curves for all the valves are well

below the characteristic curves. These values were found to be precisely equal to

1.5mm for all the cylinder valves. The optimal port diameter values of 3mm were

rounded to the next imperial values which are available in the market as 1
8

”
(inches).

The resulting pressure drop versus flow curves are shown in Figures 6.25 and 6.26

for the two cases.
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Figure 6.25: Pressure drops versus flow curves, when the manipulator is moving

in a free space and at the optimal sizes of the valve’s orifices; (a)

Boom cylinder valve (b)Arm cylinder valve (c) Bucket cylinder valve
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Figure 6.26: Pressure drops versus flow curves, when the bucket is digging a

sandy-loom soil and at the optimal sizes of the valve’s orifices; (a)

Boom cylinder valve (b)Arm cylinder valve (c) Bucket cylinder valve
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CHAPTER 7

DYNAMIC RESPONSE USING FORWARD DYNAMICS

7.1 Introduction

One of the main purposes of modeling a dynamic system is to design appropriate

control laws for the system. For a system to be controlled, its model should cap-

ture the essential dynamic aspects of the system which include but not limited to,

the interaction of the domains involved and also the inter-component interactions.

The transient and steady state responses of the system were simulated to show the

interactions involved in the system. Forward dynamics is concerned with motions

which result on a manipulator when the input is the torque at the joints

7.2 Block Expansion

The overall computational bond graph model represented in Figure 5.9 was expanded

into block diagrams using the Fakri method [32] which is illustrated in section A.5.

The block diagrams were input in a SIMULINK workspace and grouped into sub-

systems to form a model as shown in Figure 7.1 to 7.3, which form the test bed for

all the simulations to be performed in this chapter.

The hydraulic subsystem block has piston velocities as the input signal and the

cylinder forces as the output signal. When opened this subsystem appears as shown

in Figure 7.2. This block also demonstrates the interaction of the hydraulic actuators

driving the boom, arm and bucket links. The hydraulic subsystem block comprises

of the boom, arm and bucket cylinders dynamics.

Each hydraulic cylinder outputs a hydraulic force proportional to the pressure drop
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Figure 7.1: The Simulink block diagram representing the bond graph model of the

interacting hydraulic and mechanical dynamics

across the cylinder. The boom cylinder, arm cylinder and bucket cylinder forces are

denoted as e18, e91 and e121 respectively. The three force signals are combined into

one signal which becomes the overall output signal from the hydraulic subsystem

to interact with the mechanical subsystem, as shown in Figures 7.1 and 7.2. The

input signal to each of the cylinder block is the inverse of the resistance to fluid flow

generated by the directional control valve for each cylinder. As illustrated earlier,

these resistances depend with the valve displacement. These valve displacements are

considered as the overall input signals to the hydraulic subsystem and they come

from the operator.
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Figure 7.2: The Simulink block for the hydraulic dynamics

As shown in Figure 7.1, the hydraulic cylinder forces are transformed into joint

torques by the manipulator Jacobians, which as shown in section 5.2 are modulated

transformer ratios denoted as r19, r20 and r21 for the boom, arm and bucket links

respectively. The signals representing these ratios are computed in a manipulator

jacobian block.

The torque signal obtained by transforming the cylinder force signal using manip-

ulator jacobians is then fed to the mechanical subsystem block as an input signal.
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Figure 7.3 shows the mechanical subsystem block which comprises of blocks repre-

senting the mechanical dynamics of the boom, arm and bucket links.
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Figure 7.3: The Simulink block for the mechanical subsystem dynamics

Each link block outputs an angular velocity of the corresponding link joint, that

is, f19, f92 and f122 for the boom, arm, and bucket links respectively. The joint

velocity signals are combined into one signal which forms the overall output signal

from the mechanical subsystem to interact with the hydraulic subsystem, as shown

in Figures 7.1 and 7.3. The joint velocities are transformed into piston velocities of

the hydraulic cylinders using manipulator jacobians. These piston velocity signals
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are input into the hydraulic subsystem and determine the hydraulic fluid flow rate

to the actuators. Each joint velocity signal from the link block is integrated to

compute the position information for each joint. The initial conditions for the

manipulator configuration are given in these integrators. The joint displacements

determine the manipulator jacobians and the modulated transformer ratios (r1 to

r18) of the rigid body dynamics of the manipulator. This is the reason why the

joint displacements form part of the input signals of the manipulator jacobians and

modulated transformer ratio blocks.

All these SIMULINK blocks have been derived from the causal bond graph model of

the excavating mechanism as represented in Figure 5.9. Since the differential causal-

ity problem in the bond graph model was addressed, then the ordinary differential

equations in the block diagrams are guaranteed to be explicit first order ODES which

can be solved by the in build ODE-solvers of the MATLAB/SIMULINK code.

7.3 Transient and Steady-State Responses

The SIMULINK blocks described in section 7.2 were simulated to determine the

transient and steady state responses for the displacements, velocities of the cylinder

pistons and manipulator links, flow rates to the cylinders and chamber pressures of

the cylinders when all the cylinders are extending simultaneously.

During simulations, one of the links, that is the bucket, was stopped suddenly so as

to excite the other links as much as possible, and observed if this excitation was felt

in the responses of the other links and the hydraulic system. The input commands

to the system considered were the orifice opening areas of the spool valves which

depend on the spool displacements. Such an input is considered to be a combination
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of ramp and step inputs as shown in Figure 7.4. The valve displacements commands

come from the operator.
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Figure 7.4: The input command to the system

7.3.1 Link Angular Velocity and Displacement Responses

Figure 7.5 shows the simulated responses for the angular displacements and velocities

plotted in one axis with two y axes for the three links.
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Figure 7.5: The simulated angular velocity and displacement responses for; (a)

Boom link (b) Arm link (c) Bucket link
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As clearly seen in Figures 7.5 and 7.6, each manipulator link reaches its final angular

position after the piston of the corresponding cylinder completes its stroke (for the

case of boom and arm) or is stopped (for the case of bucket). Also, after the final

angular position is reached, the velocity response curve of the given cylinder drops

and settles to zero value as it is expected practically. These response curves show a

significant damped oscillations at the settling points. This can be attributed to the

springs and dampers which were added to the bond graph model in order to solve

the derivative causality problems. The effect of stopping the bucket link suddenly

is felt at the velocity response curve of the boom link as an excitement at time 3

seconds as shown in Figure 7.5(a).

7.3.2 Piston Velocity and Displacement Responses

Figure 7.6 shows the simulated responses for the piston displacements and velocities

plotted in one axis with two y axes for the three hydraulic cylinders.
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Figure 7.6: The simulated piston velocity and displacement responses for; (a)

Boom cylinder (b) Arm cylinder (c) Bucket cylinder

The piston velocity curves have a profile similar to the flow rate response curves due

to the fact that flow rate and the piston velocities are related by equation Q = Apẋ,
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where Q is the flow rate to the cylinder minus the sum of the internal leakage flow

and the compressibility flow. The response curves show clearly that at that time

when the piston completes its stroke or stops, the velocity of the piston drops and

settles to zero as it is expected practically.

The oscillations occurring in the response curves during settling times can be at-

tributed to the compressibility of the hydraulic oil in the cylinder chambers which

during modeling was considered like a spring stiffness. The damping effects to the

oscillations can be attributed to the internal leakages in the cylinders which were

modeled as R-elements. The effect of stopping the bucket link suddenly is felt at

the velocity response curve of the boom cylinder piston as an excitement in form of

damped oscillations at times 3− 4 seconds as shown in Figure 7.6(a).

7.3.3 Flow Rate Responses

Figure 7.7(a) shows the simulated responses for the flow rates of the three hydraulic

cylinders plotted in one axis, while Figure 7.7(b) shows the simulated response for

the total flow rate.

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

2
x 10-4

Fl
ow

 ra
te

 (m
3 /s

)

Time(secs)
0 1 2 3 4 5 6 7

-1

0

1

2

3

4

5

x 10-4

Fl
ow

 ra
te

(m
3 /s

)

Time(secs)

Boom
Arm
Bucket

(a) (b) 
A B C D 

Figure 7.7: The simulated flow rate response; (a) Flow rate responses to

individual cylinders (b) Total flow rate

128



The flow rate responses for all the cylinders reach the steady state value after 1

second, that is when the spool valve orifices are completely open. The response

curve for the boom cylinder which controls the heaviest link has a lowest steady

state value, due to the fact that the cylinder moving the heaviest load offers greater

resistance to fluid flow, hence the inter-actuator interaction is captured by the model.

The flow rate response curve for the arm cylinder which finishes its stroke first drops

to zero value first, then followed by the bucket cylinder which is stopped rapidly after

3 seconds. The excitement caused by stopping the bucket link rapidly is significantly

felt at the flow rate response of the boom cylinder at times 3− 4 seconds as shown

in Figure 7.7(a).

Since all the manipulator links are extending simultaneously, the total flow rate

response which is the summation of the flows to the actuators is simulated and

plotted in Figure 7.7(b). This curve can be divided into four regions, namely A,

B, C and D. In region A the three cylinders are supplied with fluid flow since they

are all moving. This is the region of maximum flow requirement. In region B only

the boom and bucket cylinders require fluid flow since already the arm cylinder has

completed its stroke. In region C only the boom cylinder requires fluid flow since

the bucket cylinder has been stopped. In region D no fluid flow is required since all

the links have stopped moving after the boom cylinder has completed its stroke.

7.3.4 Pressure Responses at the Cylinder Chambers

Figure 7.8 shows the simulated pressures in the two chambers of the boom, arm and

bucket cylinders plotted in the same axis. It is clearly seen that at the region of

ramp input (between 0 and 1 second), the pressures at the two sides of each cylinder
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Figure 7.8: The simulated head and rod side pressure responses for; (a) Boom

cylinder (b) Arm cylinder (c) Bucket cylinder

increase at the same rate until when the orifices of the valves are completely open.

After the cylinder finishes its stroke or is stopped from moving, the pressure at the

head side chamber which receives pressurized fluid, increases rapidly to the supply

pressure of ps = 14.5MPa. This is because the control action of a constant pressure

hydraulic system which ensures that the pressure supplied to the cylinder drops or

increases to an appropriate value rather than to the pump supply pressure when the

cylinder stroke is finished, was not included in the model. The effect of this is seen

in the rod side chamber pressure responses for all the cylinders in form of significant

pressure fluctuations.

From the responses plotted, it is seen that the bond graph model developed captures

the interactive dynamics, that is, inter-actuator interactions, inter-link interactions

and interaction of the hydraulic and mechanical dynamics.

• Inter-actuator interaction is captured since the cylinder actuating the heavier

link receives less fluid flow, and the cylinder actuating the lightest link receives
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more fluid flow.

• Inter-link interaction is captured since the excitation caused by stopping the

bucket link suddenly is witnessed at the response curves of the other links.

• The interaction of the mechanical and hydraulic dynamics is captured since

the excitation caused by stopping the bucket link is witnessed at the response

curves of the hydraulic system. Also the cylinder actuating the heavier link

receives less fluid flow, and the cylinder actuating the lightest link receives

more fluid flow.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

This research work was primarily concerned with the dynamic modeling of an exca-

vator using the relatively new bond graph method. The dynamic models have been

used to size the hydraulic components such as actuators and valves, and to simulate

the transient and steady state responses of the system.

The complete excavator model was constructed by modeling the hydraulic actua-

tion system and the manipulator linkage separately, then coupling the two models

into a complete model using the manipulator jacobians which were derived through

trigonometric analysis. The virtue of bond graphs in modeling multi-domain systems

became apparent since the mechanical and hydraulic dynamics of the excavator were

modeled using the same method contrary to what dominates the literature, where

the mechanical and hydraulic dynamics are modeled using different methods. The

mechanical bond graph model of the manipulator was verified by comparing the

joint torque expressions of a two link planar manipulator to those obtained by using

Newton-Euler and Lagrangian methods as analyzed in robotic textbooks. The ex-

pressions were found to agree indicating that the model captures the aspects of rigid

body dynamics of the manipulator. Also the bond graph model of the hydraulic sys-

tem was verified by comparing the open loop state responses to those of an ODE

model which has been developed in literature based on the same assumptions. The

results were found to correlate very well both in the shape of the curves, magnitude

and the response times, thus indicating that the developed model represents the

hydraulic dynamics of a valve controlled cylinder.
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To develop a mechanical dynamics model of the manipulator, forward recursive

equations similar to those applied in iterative Newton-Euler method were used to

determine the centroid velocities of the links. This is unlike in Newton-Euler method

which requires extra recursive computations to be performed so as to determine the

centroid accelerations of the links. In addition, a dynamic model resulted after rep-

resenting the horizontal and vertical velocities of the links in bond-graphic form,

while considering the momenta and weights of the links as the bond graph ele-

ments. Newton-Euler method on the other hand requires backward recursion to

be performed in order to obtain a dynamic model. This showed that the bond

graph method reduces significantly the number of recursive computations required

to be performed to a manipulator for a dynamic model to result. It can therefore

be concluded that bond graph method is more computationally efficient than the

Newton-Euler method in developing dynamic models of manipulators.

Since all the links of the excavating manipulator are driven by hydraulic power, siz-

ing of the hydraulic components become important. Quintic polynomial trajectory

was planned for all the links and simulations using inverse dynamics were carried

out. Using the pressure drop curves across the cylinders and the valves, the optimal

piston sizes for all the cylinders actuating the links were obtained as 21
4

”
(inches),

2”(inches) and 13
4

”
(inches) for the boom, arm and bucket cylinders respectively. The

flow through a valve, and the pressure drop across it were plotted. This plot was

compared with the provided valve characteristic curve to test if the valve under

consideration is capable of providing the flow for the motion. Using this method-

ology, optimal port sizes for all the valves controlling the cylinders were found to

be 1
8

”
(inches). The total power requirement for the manipulator was also simulated
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for the planned trajectory, and it was found that using a hydraulic pump with the

sized flow rate capacity of 4.7 × 10−4m3/s (28lit/min), the engine of the tractor is

able to power the excavating mechanism in digging a sandy-loom soil.

Using the optimal design parameters of the hydraulic system, forward dynamic sim-

ulations were run to determine the open loop transient and steady state responses of

the excavator. The bond graph model developed was found to capture the interactive

dynamics, that is, inter-actuator interactions, inter-link interactions and interaction

of the hydraulic and mechanical dynamics. This is due to the fact that the excita-

tion caused by suddenly stopping the bucket link during simulation, was felt in the

response curves of the other links and also of the hydraulic system. Therefore, it can

also be concluded that the dynamic model developed in this work can be applied in

designing control laws appropriate in controlling the manipulator motions.

8.2 Recommendations for Future Work

From this research work, the following aspects are suggested for further investigation:

• Inclusion of the swing motion of the manipulator in the model in order to

realize full excavating motion using bond graphs.

• Solve the derivative causality in the resulting model of the excavator by trans-

ferring the inertial elements of dependent velocities to the ports of independent

velocities. This will reduce significantly the time required for simulating the

model since the method used in solving the derivative causality in this work

(of adding the pad elements) is one of the major reasons behind the longer

simulation times.
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• When modeling the inter-actuator interaction in this work, it was assumed

for simplicity purposes that the supply pressure for all cylinders are equal,

although in practice each cylinder in a system of several cylinders operating

simultaneously has its own requirement for supply pressure depending on the

load and speed required from it. This is the reason why the simulated responses

of the head side chamber pressures for all the cylinders indicated a rapid

increase to the supply pressure value at the end of a cylinder stroke. Therefore

a detailed inter-actuator model which captures this aspect should be developed

using bond graphs.

• Use the model developed in this work to design and simulate the controllers

for controlling the dynamics and motions of the excavator.

• Fabricate and incorporate the excavating mechanism to the tractor, and subse-

quently perform experiments which will help to validate the developed models

experimentally.
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APPENDIX A

BOND GRAPH MODELING

A.1 Foundation and Basic Concept of Bond Graphs

The essential feature of the bond graph approach is the representation of energetic

interactions between systems and system components, by a single line or energy

bond. A bond graph is the combination of bonds, while a bond is a path through

which power is flowing from one point to another. Therefore a bond graph shows

the flow of power that occurs in a system. The bond is represented as a half arrow

indicating the supposed direction of energy flow, between the ports to which it is

attached. The bond may be annotated by symbols representing the effort (above

the bond) and flow (below the bond) as shown in Figure A.1.

e

f

Energy flow

Figure A.1: Bond Representation

Choosing energy as the exchange variable for a model leads naturally to the use

of two generalized variables for any dynamic system, which are the effort e(t) and

the flow f(t), whose product gives the power flowing between the elements in the

system. For example; voltage, pressure, and force are effort variables, while current,

flow rate and velocity are the corresponding flow variables. The momentum p(t),

and displacement q(t) are the energy variables which are given as [31,34],

p(t) =

∫
e(t) dt (A.1)
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and

q(t) =

∫
f(t) dt (A.2)

The generalized variables for the common individual domains are shown in Table

A.1 [31,34].

Table A.1: Generalized variables for each energy domain.

Domain Flow (f) 
variable 

Effort (e) 
variable 

Generalized 
displacement 
variable 
 

Generalized 
momentum 
variable 
 

Mechanical 
translation 

Linear 
velocity, 
v  

Force, F  Linear 
displacement, 

∫= vdtx  

Linear 
momentum, 

∫=Μ Fdtx  
Mechanical 
rotation 

Angular 
velocity,  ω  

Torque, τ  Angular 
displacement, 

∫= dtωθ  

Angular 
momentum, 

∫=Μ dtτθ  
Hydraulics Flow rate, Q  Pressure, p  Fluid volume, 

∫= QdtV f  
Flow 
momentum, 

∫= Pdtψ  
Thermodynamics Entropy flow 

rate, 
•

S  

Temperature, 
T  

Entropy, 

∫
•

= dtSS  

 

Electric Current,  I  Voltage, V  Charge, 

∫= Idtqe  
Lines, 

∫= Vdtλ  
Magnetic 

Flux rate, 
•

φ  
MMF, M  Flux linkage, 

∫
•

= dtφφ  
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A.2 Basic Bond Graph Elements

A.2.1 Energy Sources

The basic bond graph sources are the effort source (SE), and flow source (SF ),

where the type of the source defines the variable controlled by the source. Examples

are external forces, voltage and current sources, ideal motors, hydraulic pumps, etc.

Figure A.2 shows the symbolic representation of SE and SF-elements.

0:eSE 0: fSF
f f

e e

Figure A.2: SE and SF-element representation

Energy sources are ideal in the sense that either the effort or the flow variable

is independent of the co-variable. The value of the co-variable is defined by the

system which the source supplies. For example, a battery is an effort source and

if the system consists of a resistor, then the resistor determines the current (flow

variable) from the battery.

Sources can be modulated by another system variable, as is often the case with

control systems. Such a source is referred to as a Modulated Effort or Flow Source

designated as MSE, or MSF respectively. The constitutive relation for an effort

source is e = e0 and for a flow source, f = f0, where e0 and f0 are (possibly

modulated) constants.

A.2.2 Energy Stores

The two basic bond graph energy storing elements are the flow store and effort store.

The flow store element stores energy as the time integral of the flow variable applied
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to its port, and is called the capacitive element (C-element). Examples of C-elements

are, the mechanical springs, electrical capacitors, hydraulic fluid compliance, etc.

The effort store element stores energy as the time integral of the effort variable

applied to its port, and is called the inertial element (I-element). Examples of

I-elements are, mass, fluid inertance, moment of inertia, electrical inductors, etc.

Figure A.3 shows the symbolic representation of C and I-elements

f f

e e
C I

Figure A.3: C and I-elements representation

For the effort-accumulating stores (I-elements), the general constitutive relation has

the form [31,34];

f =
1

I
φ(p) (A.3)

where φ(p) is a function of the integrated effort or generalized momentum p given

by;

p =

∫
edt (A.4)

In a similar way, the flow-accumulating store (C-element) has a general constitutive

relation of the form [31,34];

e =
1

C
φ(q) (A.5)

where φ(q) is a function of the integrated flow or generalized displacement q given

by;

q =

∫
fdt (A.6)
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A.2.3 Energy Dissipators

Energy dissipators are elements which dump energy out of the system into its envi-

ronment. A single type of energy dissipator referred to as the resistive element (R-

element) is required in order to model the basic phenomena encountered in electrical

resistors, mechanical friction, etc. The effort and flow variables of the R-element are

statically constrained by a nonlinear or linear function. Examples of the R-elements

are, the electrical resistors, mechanical dashpots, orifices, etc. Figure A.4 shows the

symbolic representation of R-element.

f
e

R

Figure A.4: R-element representation

The constitutive relation for a R-element is given as [31,34];

e = Rf (A.7)

A.2.4 Junctions

These are the elements which conserve energy and distribute it between other ele-

ments in a system. They represent the model structure, and are called multi-ports,

indicating that they have two or more ports for transferring energy. The constitutive

relation which is common to these elements is that, the sum of all the energy flows

into the junction is zero , i.e,

e1f1 + e2f2 + e3f3 + ......... + enfn = 0 (A.8)

where subscripts 1, 2, 3, ......, n indicate the ports through which the energy is flowing

into the element.
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In the junction elements, either effort or flow variable is fixed and the co-variables

must therefore sum to zero according to the energy conservation Equation A.8. This

implies that there are two types of junctions (i.e effort and flow junctions) because

either the effort or the flow variable may be fixed at a specific junction.

Figure A.5 shows the symbolic representation of an effort junction, which is also

called 0-junction. In a 0-junction, the efforts are equal and the algebraic sum of the

flows is always zero [31,34], that is,

e1 = e2 = e3 (A.9)

and

f1 + f2 + f3 = 0 (A.10)

01e
2e

3e

3f

2f

1f

Figure A.5: 0-junction representation

Figure A.6 shows the symbolic representation of a flow junction, which is also called

1-junction.

In a 1-junction, the flows are equal and the algebraic sum of the efforts is always

zero [31,34], that is,

f1 = f2 = f3 (A.11)

and

e1 + e2 + e3 = 0 (A.12)
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1e
2e

3e

3f

2f

1f
1

Figure A.6: 1-junction representation

A.2.5 Transformer and Gyrator Elements

If the energy transfer element also transforms one of the effort or flow variables, then

the co-variables must be transformed such that the energy conservation relationship

in Equation A.8 still holds. Figure A.7 shows the representation of the such elements

which are categorized as either transformer (TF-element) or gyrator elements (GY-

element).

1e 2e

2f1f
rTF : 1e

1f

2e

2f
nGY :

Figure A.7: Transformer and Gyrator element representation

A TF-element has a constitutive relation where the efforts on the two ports are

constrained by the relationship [31,34],

e1 = re2 (A.13)

where the transformer ratio r, is either a constant or may be dependent on some

other system variable, resulting to a Modulated Transformer (MTF-element). For

energy conservation to hold at any instant we have

e1f1 − e2f2 = 0

f2 = rf1 (A.14)
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Physical examples of transformer elements are, mechanical lever, hydraulic cylinder

piston, a two-port electrical transformer, etc.

A GY-element has a constitutive relation where the input effort and the output flow

are constrained by the relationship [31,34],

e1 = nf2 (A.15)

where the gyrator ratio n, is either a constant or may be dependent on some other

system variable, resulting to a Modulated Gyrator (MGY-element). For energy

conservation to hold at any instant we have

e1f1 − e2f2 = 0

e2 = nf1 (A.16)

Physical example of transformer elements is the fixed field DC motor where the back

electro-magnetic field (e.m.f) generated is proportionally related to the motor shaft

speed by the motor gyrator ratio, and the input current is related to the load torque

by the same constant.

A.3 Causality in Bond Graph Model

Causal analysis is the determination of the signal direction of the bonds. Causal

analysis is in general completely covered by modeling and simulation software pack-

ages that support bond graphs. Therefore in practice causal analysis need not be

done by hand. Besides derivation of state equations, causal analysis can give insight

into the correctness and competency of the model.

A short stroke called causal stroke perpendicular to the bond at one of its ends

as shown in Figure A.8 indicate the computational direction of the effort variable.
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Accordingly, the other end so called the open end of the bond represents the compu-

tational direction of the conjugate flow variable. The position of the causal stroke is

completely independent of the position of the half arrow that indicates the direction

of power in the bond.

Figure A.8: Definition of the causal stroke

A.3.1 Causal Port Properties

Each type of port has a certain causal property. The following main classes of causal

port properties [27,31,34] can be distinguished and are shown in Table A.2,

• Ports with fixed causality - There is only one option for causality by defini-

tion. Examples are the SE−element with fixed effort-out causality, and the

SF−element with fixed flow-out causality.

• Ports with preferred causality - For some reason, depending on the type of

model manipulation, a causal form can have preference. The most common

example is the preferred integral causality of storage ports (I−element and

C−element). This is because numerical integration is preferred over numerical

differentiation during simulation.
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• Ports with arbitrary or free causality - In some cases causality can be chosen

at will. Example is the R−element whose causality can be chosen at will in

order to complete causality in a model.

• Ports with causal constraints - Multi-port elements can have causal constraints

between their ports. Examples are the;

1−junction : only one port with effort-in causality is allowed.

0−junction : only one port with flow-in causality is allowed.

TF−element : One effort-out and one flow-out causality is allowed.

GY−element : Either two effort-out causalities or two flow-out causalities is

allowed.

A.3.2 Causality Assignment

Based on the above causal port properties, all sorts of causality assignment algo-

rithms can be applied for different purposes. The common purpose is to write the

model equations in a form suitable for simulation, i.e., maximizing the number of

storage ports with integral causality.
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Table A.2: Causal properties for bond graph elements.

Causal 
property 

Bond graph 
elements 

Bond graph representation 

SE-element 

 

Fixed 
causality  

SF-element 
 

C-element with 
integral causality  

Preferred 
causality   

I-element with 
integral causality 

 
R-element with flow-
in causality 

 

Free 
causality 

R-element with flow-
out causality 

 
Transformer element 
with effort out-flow 
out causality  
Transformer element 
with effort in-flow in 
causality 
Gyrator element with 
flow in-effort out 
causality  
Gyrator element with 
effort in-flow out 
causality  
1-junction 

 

Causal 
constraint 

0-junction 

 

The most common algorithm is called Sequential Causality Assignment Procedure,

which involves the following steps [29,31,34];
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1. If there is an energy source element in the bond graph model, assign a fixed

causality to it and propagate this along the nodes with causal constraints until

propagation terminates due to multiple possibilities. Repeat this step until all

energy source ports are augmented with fixed causality.

2. If there is an energy store element in the bond graph model, assign a preferred

causality to it and propagate this causality along the nodes with causal con-

straints until propagation terminates due to multiple possibilities. Repeat this

step until all storage ports are augmented with integral causality.

3. If not all ports are causal at this point, there exists at least two ports with

arbitrary causality, resulting in a number of possibilities that all will lead

to causal paths between ports of elements that are described by algebraic

constitutive relations thus causing algebraic signal loops. Choose the causality

of these ports not only in such a way that the number of algebraic loops is

minimized, but also in such a way that the loop gains of these algebraic loops

are smaller than one as much as possible.

A.3.3 Integral and Derivative Causality

The energy storing elements contain information about the system inputs and state

variables p and q, thus permitting the system dynamics to be fully represented. The

emphasis in bond graph literature has been on the transformation of graphs to state

equations. When a bond graph model is been transformed into its state equation

form, the causality of interest for energy stores is termed as integral causality, where

the constitutive relations of the energy stores are in the form given in Table A.3.

A mixture of integral and derivative causality may occur in real physical systems,
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but only those stores exhibiting integral causality result to state variables. This

implies that the order of the set state of equations is smaller than the order of the

system. Therefore causal analysis results in an explicit computational model which

can easily be computed numerically. Three methods are available in literature which

have been successfully applied in solving any differential causality which may arise

in a system’s bond graph model.

• Add elements - The decision to neglect certain elements in the system is with-

drawn. This method was used in [34] to solve the derivative causality in an

electro-motor hoisting device’s bond graph model.

• Use of pad elements - Pad elements are normally representation of missing

or unknown stiffness in the system. This method is applied to mechanisms

and manipulators. Padded models though ensuring integral causality, may

result to stiff ordinary differential equations which slows down the simulation

process. This method was proposed in [26] and was successfully applied in [53]

to address the derivative causality in a bond graph model of a backhoe.

• Transforming the inertial elements of dependent velocities to the ports of in-

dependent velocities. This method was successfully applied in [54] to address

the derivative causality problem in a bond graph model of a telescopic rotary

crane.

A.4 Generation of Equations

A causal bond graph contains all information to derive the system dynamical equa-

tions in either transfer function or state space form. However the most natural form
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in which to frame the equations of motion for bond graph purposes is the state

space description. For fairly small bond graphs, the state space description can be

obtained in straightforward manner by hand, but for larger systems the algorithm

becomes so tedious and complex such that bond graph softwares such as, ENPORT,

MSI, CAMP-G and 20-SIM are used to obtain the state space equations of the

model.

The following procedure is used to generate state equations from a bond graph;

• Using the constitutive relations of all the elements in computational form,

develop the set of mixed differential and algebraic equations. This comprises

of 2n equations of a bond graph having n bonds. n equations compute efforts

and n equations compute flows, or derivatives of them.

• Eliminate the algebraic equations, and substitute the summation equations

of the junctions into the differential equations of the storage elements to get

m state equations where m is the number of energy storage elements in the

model.

A.5 Block Diagram Expansion

Since a causal bond graph represents a bi-lateral signal flow with fixed directions, it

can always be expanded into a block diagram. The most common procedure is the

Fakri [32] method, which is presented in Table A.3 for every individual bond graph

element.

Table A.3 (Contd): Block diagram expansion for bond graph elements
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Table A.3: Block diagram expansion for bond graph elements

Element Bond graph representation Constitutiv
e Relations 

Block diagram expansion 

C-element 
with 
integral 
causality 
 
 
 
 
 
 
 

 

 
 

q
C

e
1

1
=  

∫= fdtq  

 

 
 

I-element 
with 
integral 
causality 
 
 
 
 
 
 

 

 
 
 

p
I

f
1

1
=  

∫= edtp  

 

 
 

R-element 
with flow-in 
causality 
 
 
 
 

 

 
 

 
fRe 1=  

 

 
 

R-element 
with flow-
out 
causality 
 

 
 

 

 

e
R

f
1

1
=  

 

 
 

 
 
 
 
 
 
 

   

A.6 Simulation of a Bond Graph Model

Once an explicit computational model is arrived at, simulation of the system states

can be done using either of the following procedures;

• The state equations derived from the model using procedure in section A.4
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Transformer 
element 
with effort 
out-flow out 
causality 
 
 
 
 

 

 
 

 
21 ree =  

12 rff =  

 

 

Transformer 
element 
with effort 
in-flow in 
causality 
 
 
 

 

 

12
1 e
r

e =  

21
1 f
r

f =  

 

 
 

Gyrator 
element 
with flow 
in-effort out 
causality 
 
 
 

 

 

12 gfe =  

21 gfe =  

 

0-junction 
 
 
 
 
 
 
 
 
 

 
 

 

321 eee ==  

213 fff −=  
 

1-junction 
 
 
 
 
 
 
 
 

321 fff ==
 

213 eee −=  

 

 

can be solved using the in-built ODE-solvers of the MATLAB software.

• The block diagram expansion of the bond graph model obtained using rules

in section A.5 can be input using click-and-drag in a SIMULINK workspace
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and the system states simulated.

• The causal bond graph model obtained using procedures in section A.3 can

be input in the workspace of one of the softwares supporting the bond graphs

using click-and drag way, and the states simulated. Such softwares are; CAMP-

G, 20-SIM, ENPORT, TUTSIM, SYMBOL-90 among others.
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